6533b862fe1ef96bd12c76ff
RESEARCH PRODUCT
Specific expression of a TRIM-containing factor in ectoderm cells affects the skeletal morphogenetic program of the sea urchin embryo
Giovanni SpinelliVincenzo CavalieriRosa Guarcellosubject
BlastomeresDNA Complementaryanimal structuresTRIM Sea urchin embryo Ectoderm Skeleton biomineralization Morpholino oligonucleotides Primary mesenchyme Cell migration Guidance otp pax2/5/8 sm30MesenchymeMolecular Sequence DataMorphogenesisSettore BIO/11 - Biologia MolecolareEctodermBiologyLigandsModels BiologicalBone and BonesMesodermCell MovementEctodermGene expressionmedicineAnimalsAmino Acid SequenceMolecular BiologyGeneGeneticsBone DevelopmentSequence Homology Amino AcidGene Expression Regulation DevelopmentalEmbryoBlastomereProtein Structure TertiaryCell biologyTransplantationmedicine.anatomical_structureSea Urchinsembryonic structuresCarrier ProteinsDevelopmental Biologydescription
In the indirect developing sea urchin embryo, the primary mesenchyme cells (PMCs) acquire most of the positional and temporal information from the overlying ectoderm for skeletal initiation and growth. In this study, we characterize the function of the novel gene strim1, which encodes a tripartite motif-containing (TRIM) protein, that adds to the list of genes constituting the epithelial-mesenchymal signaling network. We report that strim1 is expressed in ectoderm regions adjacent to the bilateral clusters of PMCs and that its misexpression leads to severe skeletal abnormalities. Reciprocally, knock down of strim1 function abrogates PMC positioning and blocks skeletogenesis. Blastomere transplantation experiments establish that the defects in PMC patterning, number and skeletal growth depend upon strim1 misexpression in ectoderm cells. Furthermore, clonal expression of strim1 into knocked down embryos locally restores skeletogenesis. We also provide evidence that the Otp and Pax2/5/8 regulators, as well as FGFA, but not VEGF, ligand act downstream to strim1 in ectoderm cells, and that strim1 triggers the expression of the PMC marker sm30, an ectoderm-signaling dependent gene. We conclude that the strim1 function elicits specific gene expression both in ectoderm cells and PMCs to guide the skeletal biomineralization during morphogenesis.
year | journal | country | edition | language |
---|---|---|---|---|
2011-01-01 | Development |