6533b863fe1ef96bd12c7827

RESEARCH PRODUCT

Increased susceptibility to predation and altered anti-predator behaviour in an acanthocephalan-infected amphipod.

Nicolas KaldonskiFrank CézillyMarie-jeanne Perrot-minnot

subject

[ SDV.MP.PAR ] Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologyAmphipodaFood ChainMESH : Host-Parasite InteractionsPomphorhynchusChemical ecologyBiologyMESH : Predatory BehaviorPredationAcanthocephalaHost-Parasite InteractionsGammarusMESH : Fishes[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosisAnimalsAmphipodaPredatorTrophic levelEcologyMESH : AcanthocephalaIntermediate hostFishesHost manipulationbiology.organism_classificationMESH : AmphipodaMESH : Food ChainGammarus pulexInfectious DiseasesPulexPredatory BehaviorComplex life-cycleParasitologyMESH : AnimalsGammarus

description

7 pages; International audience; According to the 'parasitic manipulation hypothesis', phenotypic changes induced by parasites in their intermediate hosts are effective means of increasing trophic transmission to final hosts. One obvious prediction, although seldom tested, is that increased vulnerability of infected prey to an appropriate predator should be achieved by the parasite altering the anti-predator behaviour of its intermediate host. In this study, we tested this prediction using the fish acanthocephalan Pomphorhynchus tereticollis and the freshwater amphipod Gammarus pulex. Firstly, we estimated the relative vulnerability of infected and uninfected gammarids to predation by the bullhead Cottus gobio in the field. Second, we investigated under experimental conditions how two common anti-predator behaviours of aquatic invertebrates, refuge use and short-distance reaction to predator chemical cues, were affected by infection status. We found that the prevalence of infection in the field was 10 times higher among gammarids collected from the stomach contents of bullheads compared with free-ranging individuals collected in the same river. In a microcosm uninfected gammarids, but not infected ones, increased the use of refuge in the presence of a bullhead. Finally, a behavioural experiment using an Y-maze olfactometer showed opposite reactions to predator odour. Whereas uninfected gammarids were significantly repulsed by the chemical cues originating from bullheads, infected ones were significantly attracted to the odour of the predator. Taken together, our results suggest that the alteration of anti-predator behaviour in infected G. pulex might enhance predation by bullheads in the field. Reversing anti-predator behaviour might thus be an efficient device by which parasites with complex life-cycles increase their trophic transmission to final hosts. Further studies should pay more attention to both the increased vulnerability of infected prey to an appropriate predator in the field and the influence of parasitic infection on the anti-predator behaviour of intermediate hosts.

10.1016/j.ijpara.2006.12.005https://pubmed.ncbi.nlm.nih.gov/17258219