6533b863fe1ef96bd12c789c

RESEARCH PRODUCT

Nonexistence Results for Higher Order Fractional Differential Inequalities with Nonlinearities Involving Caputo Fractional Derivative

Calogero VetroBessem SametMohamed Jleli

subject

Work (thermodynamics)General MathematicsStructure (category theory)test function methodFractional calculusNonlinear systemFlow (mathematics)Settore MAT/05 - Analisi Matematicanonexistenceglobal solutionComputer Science (miscellaneous)Test functions for optimizationQA1-939Applied mathematicsOrder (group theory)A priori and a posteriorihigher order fractional differential inequalityreaction-diffusion processEngineering (miscellaneous)MathematicsMathematics

description

Higher order fractional differential equations are important tools to deal with precise models of materials with hereditary and memory effects. Moreover, fractional differential inequalities are useful to establish the properties of solutions of different problems in biomathematics and flow phenomena. In the present work, we are concerned with the nonexistence of global solutions to a higher order fractional differential inequality with a nonlinearity involving Caputo fractional derivative. Namely, using nonlinear capacity estimates, we obtain sufficient conditions for which we have no global solutions. The a priori estimates of the structure of solutions are obtained by a precise analysis of the integral form of the inequality with appropriate choice of test function.

10.3390/math9161866http://dx.doi.org/10.3390/math9161866