6533b863fe1ef96bd12c78cf
RESEARCH PRODUCT
DiseaseLinc: Disease Enrichment Analysis of Sets of Differentially Expressed LincRNAs
Jean-fred FontaineSweta TalyanPiyush MoreEnrique M. MuroMiguel A. Andrade-navarrosubject
PseudogeneBreast NeoplasmsKaplan-Meier EstimateComputational biologyDiseaseBiologyweb toolENCODEArticleenrichment analysisdiseasesUser-Computer InterfaceIntergenic regionmicroRNAHumansDiseaselcsh:QH301-705.5GeneInternetGene Expression ProfilinglincRNAsGeneral MedicinePrognosisGene Expression Regulation Neoplasticlcsh:Biology (General)FemaleRNA Long NoncodingFunction (biology)Biogenesisdescription
Long intergenic non-coding RNAs (LincRNAs) are long RNAs that do not encode proteins. Functional evidence is lacking for most of them. Their biogenesis is not well-known, but it is thought that many lincRNAs originate from genomic duplication of coding material, resulting in pseudogenes, gene copies that lose their original function and can accumulate mutations. While most pseudogenes eventually stop producing a transcript and become erased by mutations, many of these pseudogene-based lincRNAs keep similarity to the parental gene from which they originated, possibly for functional reasons. For example, they can act as decoys for miRNAs targeting the parental gene. Enrichment analysis of function is a powerful tool to discover the functional effects of a treatment producing differential expression of transcripts. However, in the case of lincRNAs, since their function is not easy to define experimentally, such a tool is lacking. To address this problem, we have developed an enrichment analysis tool that focuses on lincRNAs exploiting their functional association, using as a proxy function that of the parental genes and has a focus on human diseases. The tool is available at: http://cbdm-01.zdv.uni-mainz.de:3838/piyusmor/DiseaseLinc/.
year | journal | country | edition | language |
---|---|---|---|---|
2021-03-29 | Cells |