0000000000732734

AUTHOR

Sweta Talyan

0000-0002-7160-6742

showing 5 related works from this author

Highlights of the 1st Student Symposium on Computational Genomics

2017

On 30 November 2016, over 70 junior researchers in computational biology from diverse countries met in Mainz, Germany, for the 1st Student Symposium on Computational Genomics. Overall, the symposium was a great success and featured four outstanding keynote lectures, nine selected student talks, and over 38 poster presentations. This report briefly highlights the scientific outcomes and activities of this student-driven event.

Computer scienceComputational genomicsLibrary scienceGenomics and Computational Biology
researchProduct

Comprehensive translational control of tyrosine kinase expression by upstream open reading frames

2016

Post-transcriptional control has emerged as a major regulatory event in gene expression and often occurs at the level of translation initiation. Although overexpression or constitutive activation of tyrosine kinases (TKs) through gene amplification, translocation or mutation are well-characterized oncogenic events, current knowledge about translational mechanisms of TK activation is scarce. Here, we report the presence of translational cis-regulatory upstream open reading frames (uORFs) in the majority of transcript leader sequences of human TK mRNAs. Genetic ablation of uORF initiation codons in TK transcripts resulted in enhanced translation of the associated downstream main protein-codin…

0301 basic medicineCancer ResearchFive prime untranslated regionKozak consensus sequenceShort CommunicationBiologymedicine.disease_causeProto-Oncogene MasGene Expression Regulation Enzymologic03 medical and health sciencesOpen Reading FramesEukaryotic translationUpstream open reading frameGeneticsmedicineHumansGene Regulatory NetworksMolecular BiologyGeneticsMutationGene Expression ProfilingTranslation (biology)Protein-Tyrosine KinasesOpen reading frame030104 developmental biologyHEK293 CellsProtein BiosynthesisHuman genomeHeLa Cells
researchProduct

Identification of transcribed protein coding sequence remnants within lincRNAs

2018

Abstract Long intergenic non-coding RNAs (lincRNAs) are non-coding transcripts >200 nucleotides long that do not overlap protein-coding sequences. Importantly, such elements are known to be tissue-specifically expressed and to play a widespread role in gene regulation across thousands of genomic loci. However, very little is known of the mechanisms for the evolutionary biogenesis of these RNA elements, especially given their poor conservation across species. It has been proposed that lincRNAs might arise from pseudogenes. To test this systematically, we developed a novel method that searches for remnants of protein-coding sequences within lincRNA transcripts; the hypothesis is that we can t…

0301 basic medicineTransposable elementSequence analysisPseudogeneRetrotransposonComputational biologyBiologyOpen Reading Frames03 medical and health sciences0302 clinical medicineIntergenic regionSequence Analysis ProteinGeneticsHumansAmino Acid SequenceGeneRegulation of gene expressionBase SequenceSequence Analysis RNAComputational Biology030104 developmental biologyGene Expression RegulationDNA IntergenicRNA Long NoncodingSequence AlignmentAlgorithms030217 neurology & neurosurgeryBiogenesisNucleic Acids Research
researchProduct

A Methodology to Study Pseudogenized lincRNAs

2021

Long intergenic noncoding RNAs (lincRNAs) are known to be tissue specifically expressed and able to regulate functional protein-coding genes: some can even act as competing endogenous RNAs (ceRNAs), because microRNAs can bind to them instead of the corresponding mRNA binding sites. Some lincRNAs contain remnants of protein-coding sequences and it has been hypothesized that they might arise after a pseudogenization processes. However, a major limitation in the study of such phenomenon is the lack of proper computational tools designed to align/analyze protein-coding sequences and noncoding sequences. To overcome this limitation, we published a method that finds the remnants of protein-coding…

0301 basic medicineCompeting endogenous RNAPseudogeneSequence alignmentComputational biologyBiology03 medical and health sciences030104 developmental biology0302 clinical medicineIntergenic regionmicroRNASingle pointGene030217 neurology & neurosurgerySequence (medicine)
researchProduct

DiseaseLinc: Disease Enrichment Analysis of Sets of Differentially Expressed LincRNAs

2021

Long intergenic non-coding RNAs (LincRNAs) are long RNAs that do not encode proteins. Functional evidence is lacking for most of them. Their biogenesis is not well-known, but it is thought that many lincRNAs originate from genomic duplication of coding material, resulting in pseudogenes, gene copies that lose their original function and can accumulate mutations. While most pseudogenes eventually stop producing a transcript and become erased by mutations, many of these pseudogene-based lincRNAs keep similarity to the parental gene from which they originated, possibly for functional reasons. For example, they can act as decoys for miRNAs targeting the parental gene. Enrichment analysis of fun…

PseudogeneBreast NeoplasmsKaplan-Meier EstimateComputational biologyDiseaseBiologyweb toolENCODEArticleenrichment analysisdiseasesUser-Computer InterfaceIntergenic regionmicroRNAHumansDiseaselcsh:QH301-705.5GeneInternetGene Expression ProfilinglincRNAsGeneral MedicinePrognosisGene Expression Regulation Neoplasticlcsh:Biology (General)FemaleRNA Long NoncodingFunction (biology)BiogenesisCells
researchProduct