6533b863fe1ef96bd12c78ed
RESEARCH PRODUCT
Can Indirect Herbicide Exposure Modify the Response of the Colorado Potato Beetle to an Organophosphate Insecticide?
Aigi MargusLeena LindströmMiia J. Rainiosubject
0106 biological sciencesInsecticidesCarbamateColoradomedicine.medical_treatmentGlutathione reductase010501 environmental sciencesPharmacology010603 evolutionary biology01 natural sciencesSuperoxide dismutasechemistry.chemical_compoundmedicineAnimalsGlutathione TransferaseSolanum tuberosum0105 earth and related environmental scienceschemistry.chemical_classificationEcologybiologyHerbicidesGlutathione peroxidaseOrganophosphateColorado potato beetlefood and beveragesGeneral MedicineGlutathionebiology.organism_classificationOrganophosphatesColeopterachemistryInsect Sciencebiology.proteinAzinphos-methyldescription
AbstractOrganisms live in complex multivariate environments. In agroecosystems, this complexity is often human-induced as pest individuals can be exposed to many xenobiotics simultaneously. Predicting the effects of multiple stressors can be problematic, as two or more stressors can have interactive effects. Our objective was to investigate whether indirect glyphosate-based herbicide (GBH) exposure of the host plant has interactive effects in combination with an insecticide (azinphos-methyl) on an invasive pest Colorado potato beetle (Leptinotarsa decemlineata Say). We tested the effects of GBH and insecticide on the survival, insecticide target genes expression (acetylcholinesterase genes) and oxidative status biomarkers (glutathione S-transferase [GST], glucose-6-phosphate dehydrogenase [G6PDH], glutathione reductase homolog [GR], glutathione peroxidase homolog [GPx], total glutathione [totGSH], glutathione reduced-oxidized [GSH: GSSG], catalase [CAT], superoxide dismutase [SOD], lipid hydroperoxides). We found that exposure to indirect GBH has no single or interactive effects in combination with the insecticide on larval survival. However, prior exposure to GBH inhibits Ldace1 gene expression by 0.55-fold, which is the target site for the organophosphate and carbamate insecticides. This difference disappears when individuals are exposed to both GBH and insecticide, suggesting an antagonistic effect. On the other hand, oxidative status biomarker scores (PCAs of GPx, GR, and CAT) were decreased when exposed to both stressors, indicating a synergistic effect. Overall, we found that indirect GBH exposure can have both antagonistic and synergistic effects in combination with an insecticide, which should be considered when aiming for an ecologically relevant risk assessment of multiple human-induced stressors.
year | journal | country | edition | language |
---|---|---|---|---|
2018-11-23 | Journal of Economic Entomology |