6533b863fe1ef96bd12c7c13

RESEARCH PRODUCT

LOCALIZZAZIONE DELLA LINEA DI RIVA, IN SPIAGGE SABBIOSE STABILI,CONSIDERANDO LE FLUTTUAZIONI DA ONDE E MAREE

Giorgio Manno

subject

SPIAGGESettore GEO/05 - Geologia ApplicataLINEA DI RIVAFLUTTUAZIONIONDEMAREE

description

La linea di riva è definita come la linea di contatto tra la superficie del mare e la terra. La posizione della linea di riva muta continuamente nel tempo a causa della natura dinamica dei livelli idrici presenti in prossimità del litorale, come onde e maree. La variabilità della linea di riva e le tendenze evolutive dei litorali, sono state e sono tuttora oggetto di numerose ricerche, svolte sia a breve sia a lungo termine. Le continue modifiche dei litorali dipendono da diverse cause: i cambiamenti dovuti alle variazioni del livello idrico (per es. onde, tsunami, maree, innalzamento del livello del mare) e le modifiche geomorfologiche (es. la formazione di barre, cuspidi, ecc.). Per tali ragioni, conoscere come cambia nel tempo la posizione della linea di riva, diventa importante per la progettazione e la pianificazione costiera, per la suddivisione di tali aree in zone a rischio, per la distinzione delle aree demaniali da quelle private e l’applicazione di modelli morfodinamici di previsione (analisi erosione-deposito). Individuare la posizione della linea di riva significa anche ottenere informazioni sui cambiamenti che essa ha subito sia a causa della presenza di opere marittime (pennelli, barriere frangiflutto, porti, ecc.), sia a causa delle stesse modifiche che subisce la spiaggia. A quanto detto va aggiunto che identificare la posizione della linea di riva è utile anche a quantificare, in termini di forma e volume, le modifiche subite da una spiaggia. Per tutte queste ragioni la posizione della linea di riva è il più comune indicatore geomorfologico nella aree costiere. Abitualmente, la linea di riva viene identificata attraverso l’uso di immagini aeree ed utilizzata per la ricostruzione dell’evoluzione storica dei litorali. Tuttavia, le informazioni estratte da tali immagini, descrivendo il confine istantaneo acqua-terra, garantiscono l’individuazione della linea di riva esclusivamente come limite asciutto/bagnato presente al momento della ripresa, senza fornire alcuna indicazione riguardo alle condizioni medie. In questa tesi è stato proposto un nuovo metodo multidisciplinare che permette di identificare la posizione della linea di riva, mediante l’utilizzo di immagini aeree, considerando però gli effetti che il moto ondoso e le maree hanno sulla posizione della stessa (gli effetti del trasporto solido e delle correnti sono stati trascurati). L’applicazione di questo metodo ha implicato l’uso di diverse tecniche di differenti discipline, integrandole allo scopo di facilitare il posizionamento del limite cercato. Fasi peculiari nel metodo messo a punto sono, lo studio topografico-geomorfologico e lo studio idraulico. Sebbene i rilievi geologico-geomorfologico siano stati essenzialmente descrittivi, essi sono risultati complementari e funzionali allo studio idraulico. La conoscenza delle caratteristiche geomorfologiche della spiaggia e delle fluttuazioni del livello idrico superficiale (onde e maree), garantisce infatti un livello di accuratezza maggiore nella stima della linea di riva. La natura dinamica della linea di riva, infatti suggerisce che questo confine acqua/terra non può essere identificato attraverso una singola linea ma da una fascia a causa delle continue oscillazioni. vi Il metodo è stato applicato ad una spiaggia in equilibrio geomorfologico del Mediterraneo ricadente nella costa occidentale della Sicilia. Lo studio geomorfologico ha descritto fisicamente la spiaggia emersa e sommersa: a) identificando i morfotipi, b) caratterizzando la granulometria e la composizione dei sedimenti e c) ricostruendo i profili. Lo studio idraulico è stato svolto in quattro fasi: 1) reperimento dei dati di onde e maree, 2) individuazione della mareggiata “ordinaria” e della fluttuazione mareale, 3) propagazione del moto ondoso da largo fino ad acque basse e 4) calcolo del run-up. Per prendere in considerazione gli effetti delle onde sulla posizione della linea di riva, è stato considerato il concetto di mareggiata “ordinaria”, citato dalla Corte di Cassazione (Sez., Un., 02/05/1962, n.849) che definisce Lido quella “porzione di riva che non solo è a contatto diretto con le acque del mare, ma ne resta coperto dalle ordinarie mareggiate”. Per ricavare i parametri della mareggiata ordinaria è stato condotto uno studio statistico degli eventi estremi attraverso il metodo delle mareggiate triangolari equivalenti (m.t.e.). Per confrontare i risultati è stata svolta anche un’analisi statistica dei massimi valori usando la classica legge di Weibull (direzionale e omnidirezionale). Entrambe le analisi hanno dato come risultato le altezze d’onda significative per tempo di ritorno di un anno, considerate in questo studio come rappresentative delle condizioni di “mareggiata ordinaria”. Una volta note le altezze d’onda significative, per ciascuna direzione di provenienza, è stato utilizzato un modello di propagazione del moto ondoso (SWAN - Simulating Waves Nearshore). Il modello ha calcolato i cambiamenti dei parametri d’onda nella propagazione da largo a sotto costa. I dati così ottenuti sono stati utilizzati per il calcolo del run-up, assunto come la massima elevazione verticale del livello medio marino, rispetto al livello di quiete. Infine l’analisi dell’influenza sul posizionamento della linea di riva legata alle maree astronomiche, è stata condotta prendendo come riferimento una serie di dati mareografici relativi al periodo compreso tra 1999 e il 2009. Concluso lo studio idraulico e note le oscillazioni mareali e delle onde è stata definita una fascia di incertezza attorno alla linea individuata dalle immagini aeree. La striscia di spiaggia, delimitata utilizzando il concetto di “mareggiata ordinaria di tempo di ritorno pari a un anno”, ha suggerito che tale area appartiene statisticamente più al mare che alla terra. Ulteriori miglioramenti possono essere introdotti in futuro per tenere conto degli effetti del trasporto dei sedimenti, delle correnti e delle modifiche dei fondali in termini di batimetria. The shoreline is defined as the contact line between the land and sea surface. Due to the dynamic nature of water levels at the coastal boundary, such as waves and tides, the shoreline position incessantly changes in time. The shoreline variability and coastal trends have been the main object of several researches and it is the main target of this thesis. The continuous changing of shoreline position depends on several causes: that due to the hydrodynamic (e.g. waves, tsunami, tides, sea level rise, storm surge) and geomorphological change (e.g. barrier island formation, spit development). Consequently, the exact understanding of shoreline dynamic is important for a wide range of coastal studies such as: a) management and planning of coastal zones, b) hazard mapping, c) defining the exact boundary between state and private owned areas and d) for conceptual or predictive modelling of coastal morphodynamics (erosionaccretion analysis). Moreover, the location of the shoreline can provide information about shoreline changes due to man-made structures (groins, breakwaters, harbors, ecc.) and about beaches dynamic (shape and volume). The aforementioned elements are useful to quantify rates of change in time. For all these reasons the shoreline position is the most common morphologic indicator of coastal areas. Usually, the shoreline is positioned by means of aerial images interpretation and then the evolution in time is obtained by a time series images analysis. However, the shoreline position extracted from aerial images only represents the wet/dry line that describes the instantaneous land-water boundary at the instant of the acquisition without providing any information concerning to the “normal” or “average” conditions. In this thesis a novel multidisciplinary method which allows the estimation of the shoreline position by means of remotely sensed images, considering the effects of waves and tides, has been proposed. The application of this method involves several techniques used in other disciplines which were integrated in order to trace the shoreline. The key steps of the proposed method involve the topographic-geomorphic and hydraulic studies. Even if the geological and the geomorphological survey were mainly descriptive, they are functional to the hydraulic study. The understanding of the geomorphological characteristics and the surface water level fluctuations (waves and tides), provides a greater level of accuracy for shoreline positioning. In fact the dynamic nature of the shoreline suggests that this water-land boundary cannot be defined as a single line but it has to be positioned within a strip. The method has been applied to a Mediterranean beach located in the western Sicily. This beach is geomorphologically in equilibrium as demonstrated by the geomorphological study and by the physical description of the submerged and emerged beach. Physical characteristics description has been completed with the size and composition of sediments analysis. Moreover, the beach profiles and their average slopes were also obtained. viii The hydraulic study was divided into four steps: 1) wave and tide data collection, 2) identification of “ordinary” sea storm and tides fluctuation, 3) propagation of waves from offshore to nearshore and 4) run-up computation. In order to take into account the wave effects on the shoreline position during one year, the concept of “ordinary” sea storm was used. As defined by the Italian law the shoreline (“lido” in Italian), is the beach zone in contact whit the sea and covered by water during an “ordinary” sea storm. In this study 1 year return period was considered as representative of “ordinary” conditions (as reported in the Italian juridical definition - Corte di Cassazione, Sez., Un., 02/05/1962, n.849). In order to evaluate the parameters of a “ordinary” sea storm, a statistic analysis of extreme events has been performed. This analysis was carried out using the concept of “equivalent triangular storm” (e.t.s.). The e.t.s. results were compared with the application of directional and omni-directional Weibull probability density functions on the wave data. Both analyses produced similar results and they gave the significant wave height for each return period considered. Once the significant wave heights and the associated return periods for each wind sector were known, a propagation model (SWAN - Simulating Waves Nearshore), was used to calculate height and period changes of a wave propagating from offshore to nearshore. The outputs obtained were used for the run-up calculation. To calculate the run-up two different approaches were used: an empirical formula and a Boussinesq fully non linear numerical model with a new lagrangian shoreline boundary condition. Finally in order to identify the shoreline position, the sea level fluctuations due to astronomical influences have to be taken into account. For this reason a tide analysis was performed using tide observations collected during last decade. Once known the wave and tidal fluctuations a strip of uncertainty around the aerial image detected shoreline has been defined. The beach strip determined using the “one year return period ordinary sea storm concept” suggests that this area belongs more to the sea than to the land. Further analyses have to be carried out in order to take also into account the sediment transport, currents and morphological deformation (bathymetry) in time.

http://hdl.handle.net/10447/94672