6533b86cfe1ef96bd12c7fcc

RESEARCH PRODUCT

MOESM1 of Propagule pressure increase and phylogenetic diversity decrease community’s susceptibility to invasion

T. KetolaK. SaarinenL. Lindström

subject

15. Life on land

description

Additional file 1: Figure S1. Phylogeny of the study species, based on 16S rRNA. The tree includes the sequences FJ971882 (E. aerogenes), GQ856082 (L. adecarboxylata), NR_041980 (S. marcescens ssp. marcescens), NR_024570 (E. coli), AF094736 (P. putida), and AB680102 (P. chlororaphis). The sequence accession numbers were obtained from the NCBI nucleotide sequences database. Metrics for mean phylogenetic distances and variance of distances were calculated based on standardized distances between species. Results from data analysis of full data containing all communities. Figure S2. Effects of propagule pressure (A), phylogenetic diversity (B) and phylogenetic distance (C) on invasion success after 3 days from invasion of depicted from quadratic model. Effects of propagule pressure (D), phylogenetic diversity (E) and phylogenetic distance (F) on invasion success after 9 days from invasion of depicted from quadratic model. Effects of propagule pressure (G), phylogenetic diversity (G) and phylogenetic distance (I) on invasion success after 9 days from invasion of depicted from model containing only linear effects (panels G-I). Both linear and quadratic models are represented due to model selection uncertainty indicated by very similar AIC values. Panels containing significant effects are highlighted with red fit line. Analysis was performed on the whole dataset. In dataset used in the paper the outlier of the phylogenetic diversity (the left most observations) were omitted from the analysis. Whiskers denote ± 1.96 × standard error of the mean.