6533b86cfe1ef96bd12c7ff8
RESEARCH PRODUCT
Importance sampling type estimators based on approximate marginal Markov chain Monte Carlo
Jordan FranksJordan FranksMatti ViholaJouni HelskeJouni Helskesubject
Statistics and ProbabilityHyperparameter05 social sciencesBayesian probabilityStrong consistencyEstimatorContext (language use)Markov chain Monte Carlo01 natural sciencesStatistics::Computation010104 statistics & probabilitysymbols.namesake0502 economics and businesssymbols0101 mathematicsStatistics Probability and UncertaintyParticle filterAlgorithmImportance sampling050205 econometrics Mathematicsdescription
We consider importance sampling (IS) type weighted estimators based on Markov chain Monte Carlo (MCMC) targeting an approximate marginal of the target distribution. In the context of Bayesian latent variable models, the MCMC typically operates on the hyperparameters, and the subsequent weighting may be based on IS or sequential Monte Carlo (SMC), but allows for multilevel techniques as well. The IS approach provides a natural alternative to delayed acceptance (DA) pseudo-marginal/particle MCMC, and has many advantages over DA, including a straightforward parallelisation and additional flexibility in MCMC implementation. We detail minimal conditions which ensure strong consistency of the suggested estimators, and provide central limit theorems with expressions for asymptotic variances. We demonstrate how our method can make use of SMC in the state space models context, using Laplace approximations and time-discretised diffusions. Our experimental results are promising and show that the IS type approach can provide substantial gains relative to an analogous DA scheme, and is often competitive even without parallelisation.
year | journal | country | edition | language |
---|---|---|---|---|
2020-10-05 | Scandinavian Journal of Statistics |