6533b86cfe1ef96bd12c8095

RESEARCH PRODUCT

The sequence of open and closed prefixes of a Sturmian word

Alessandro De LucaLuca Q. ZamboniGabriele Fici

subject

FOS: Computer and information sciencesDiscrete Mathematics (cs.DM)Formal Languages and Automata Theory (cs.FL)Sturmian word closed wordComputer Science - Formal Languages and Automata Theory0102 computer and information sciences68R1501 natural sciencesPseudorandom binary sequenceCombinatorics[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]FOS: MathematicsMathematics - Combinatorics0101 mathematicsMathematicsSequenceClosed wordSettore INF/01 - InformaticaApplied Mathematics010102 general mathematicsSturmian wordSturmian wordPrefix010201 computation theory & mathematicsCombinatorics (math.CO)SuffixElement (category theory)Word (computer architecture)Maximal elementComputer Science - Discrete Mathematics

description

A finite word is closed if it contains a factor that occurs both as a prefix and as a suffix but does not have internal occurrences, otherwise it is open. We are interested in the {\it oc-sequence} of a word, which is the binary sequence whose $n$-th element is $0$ if the prefix of length $n$ of the word is open, or $1$ if it is closed. We exhibit results showing that this sequence is deeply related to the combinatorial and periodic structure of a word. In the case of Sturmian words, we show that these are uniquely determined (up to renaming letters) by their oc-sequence. Moreover, we prove that the class of finite Sturmian words is a maximal element with this property in the class of binary factorial languages. We then discuss several aspects of Sturmian words that can be expressed through this sequence. Finally, we provide a linear-time algorithm that computes the oc-sequence of a finite word, and a linear-time algorithm that reconstructs a finite Sturmian word from its oc-sequence.

10.1016/j.aam.2017.04.007http://hdl.handle.net/11588/681856