6533b86cfe1ef96bd12c8097
RESEARCH PRODUCT
Normal, Abby Normal, Prefix Normal
P��ter BurcsiGabriele FiciZsuzsanna Lipt��kFrank RuskeyJoe Sawadasubject
FOS: Computer and information sciencesDiscrete Mathematics (cs.DM)Formal Languages and Automata Theory (cs.FL)Computer Science - Data Structures and AlgorithmsFOS: MathematicsMathematics - CombinatoricsData Structures and Algorithms (cs.DS)Computer Science - Formal Languages and Automata TheoryCombinatorics (math.CO)Data_CODINGANDINFORMATIONTHEORYComputer Science - Discrete Mathematicsdescription
A prefix normal word is a binary word with the property that no substring has more 1s than the prefix of the same length. This class of words is important in the context of binary jumbled pattern matching. In this paper we present results about the number $pnw(n)$ of prefix normal words of length $n$, showing that $pnw(n) =\Omega\left(2^{n - c\sqrt{n\ln n}}\right)$ for some $c$ and $pnw(n) = O \left(\frac{2^n (\ln n)^2}{n}\right)$. We introduce efficient algorithms for testing the prefix normal property and a "mechanical algorithm" for computing prefix normal forms. We also include games which can be played with prefix normal words. In these games Alice wishes to stay normal but Bob wants to drive her "abnormal" -- we discuss which parameter settings allow Alice to succeed.
year | journal | country | edition | language |
---|---|---|---|---|
2014-04-01 |