6533b86cfe1ef96bd12c8251

RESEARCH PRODUCT

Incoherent dispersive shocks in the spectral evolution of random waves

Josselin GarnierAntonio PicozziStefano TrilloGang Xu

subject

Shock wavePhysics[MATH.MATH-PR] Mathematics [math]/Probability [math.PR]Basis (linear algebra)[STAT.TH] Statistics [stat]/Statistics Theory [stat.TH]Spectrum (functional analysis)ComputerSystemsOrganization_COMPUTER-COMMUNICATIONNETWORKSIncoherent scatterGeneral Physics and AstronomyBreaking wave[STAT.TH]Statistics [stat]/Statistics Theory [stat.TH]01 natural sciencesRandom waves010305 fluids & plasmas[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]Nonlinear systemSpectral evolutionClassical mechanics[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]0103 physical sciences010306 general physics[MATH.MATH-ST] Mathematics [math]/Statistics [math.ST]GeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)ComputingMilieux_MISCELLANEOUSMathematicsofComputing_DISCRETEMATHEMATICS

description

We predict theoretically and numerically the existence of incoherent dispersive shock waves. They manifest themselves as an unstable singular behavior of the spectrum of incoherent waves that evolve in a noninstantaneous nonlinear environment. This phenomenon of "spectral wave breaking" develops in the weakly nonlinear regime of the random wave. We elaborate a general theoretical formulation of these incoherent objects on the basis of a weakly nonlinear statistical approach: a family of singular integro-differential kinetic equations is derived, which provides a detailed deterministic description of the incoherent dispersive shock wave phenomenon.

https://hal.science/hal-00934790