6533b86cfe1ef96bd12c8251
RESEARCH PRODUCT
Incoherent dispersive shocks in the spectral evolution of random waves
Josselin GarnierAntonio PicozziStefano TrilloGang Xusubject
Shock wavePhysics[MATH.MATH-PR] Mathematics [math]/Probability [math.PR]Basis (linear algebra)[STAT.TH] Statistics [stat]/Statistics Theory [stat.TH]Spectrum (functional analysis)ComputerSystemsOrganization_COMPUTER-COMMUNICATIONNETWORKSIncoherent scatterGeneral Physics and AstronomyBreaking wave[STAT.TH]Statistics [stat]/Statistics Theory [stat.TH]01 natural sciencesRandom waves010305 fluids & plasmas[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]Nonlinear systemSpectral evolutionClassical mechanics[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]0103 physical sciences010306 general physics[MATH.MATH-ST] Mathematics [math]/Statistics [math.ST]GeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)ComputingMilieux_MISCELLANEOUSMathematicsofComputing_DISCRETEMATHEMATICSdescription
We predict theoretically and numerically the existence of incoherent dispersive shock waves. They manifest themselves as an unstable singular behavior of the spectrum of incoherent waves that evolve in a noninstantaneous nonlinear environment. This phenomenon of "spectral wave breaking" develops in the weakly nonlinear regime of the random wave. We elaborate a general theoretical formulation of these incoherent objects on the basis of a weakly nonlinear statistical approach: a family of singular integro-differential kinetic equations is derived, which provides a detailed deterministic description of the incoherent dispersive shock wave phenomenon.
year | journal | country | edition | language |
---|---|---|---|---|
2013-01-01 |