6533b86cfe1ef96bd12c8273

RESEARCH PRODUCT

Coherent Quantum Tomography

Joonas Ilmavirta

subject

FOS: Physical sciences01 natural sciencesMatrix (mathematics)neutrino physics0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: MathematicsStatistical physics0101 mathematics010306 general physicsQuantumMathematical PhysicsMathematicsQuantum Physicsinverse problemsgeophysicsApplied Mathematicsta111quantum mechanics010102 general mathematicsMathematical analysisTime evolutionweighted ray transformsMathematical Physics (math-ph)81Q99 81V99 86A22 44A12Inverse problemQuantum tomographyInjective functionComputational MathematicsMathematics - Classical Analysis and ODEsTomographyNeutrinoQuantum Physics (quant-ph)Analysis

description

We discuss a quantum mechanical indirect measurement method to recover a position dependent Hamilton matrix from time evolution of coherent quantum mechanical states through an object. A mathematical formulation of this inverse problem leads to weighted X-ray transforms where the weight is a matrix. We show that such X-ray transforms are injective with very rough weights. Consequently, we can solve our quantum mechanical inverse problem in several settings, but many physically relevant problems we pose also remain open. We discuss the physical background of the proposed imaging method in detail. We give a rigorous mathematical treatment of a neutrino tomography method that has been previously described in the physical literature.

https://doi.org/10.1137/15m1026821