6533b86cfe1ef96bd12c82c4

RESEARCH PRODUCT

Character of the Phase Transition in Thin Ising Films with Competing Walls

Kurt BinderDavid P. LandauAlan M. Ferrenberg

subject

PhysicsPhase transitionCondensed matter physicsWetting transitionCritical point (thermodynamics)Critical phenomenaQuantum critical pointGeneral Physics and AstronomyIsing modelRenormalization groupCritical exponent

description

By extensive Monte Carlo simulations of a lattice gas model we have studied the controversial nature of the gas-liquid transition of a fluid confined between two parallel plates that exert competing surface fields. We find that the transition is shifted to a temperature just below the wetting transition of a semi-infinite fluid but belongs to the two-dimensional Ising universality class. In between this new type of critical point and bulk criticality, a response function ${x}_{\mathrm{nn}}^{max}$ varying exponentially with $D$ is observed, $\frac{2 \mathrm{ln}{\ensuremath{\chi}}_{\mathrm{nn}}^{max}}{D}={\ensuremath{\ell}}^{\ensuremath{-}1}$, where $\ensuremath{\ell}$ is a new length characterizing interfaces.

https://doi.org/10.1103/physrevlett.74.298