6533b86cfe1ef96bd12c87fc

RESEARCH PRODUCT

From first to fourth order rational solutions to the Boussinesq equation

Pierre Gaillard

subject

rogue waves PACS numbers : 33Q55rational solutions[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]4710A-[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]37K104735Fg4754BdBoussinesq equation

description

Rational solutions to the Boussinesq equation are constructed as a quotient of two polynomials in x and t. For each positive integer N , the numerator is a polynomial of degree N (N + 1) − 2 in x and t, while the denominator is a polynomial of degree N (N + 1) in x and t. So we obtain a hierarchy of rational solutions depending on an integer N called the order of the solution. We construct explicit expressions of these rational solutions for N = 1 to 4.

https://hal.archives-ouvertes.fr/hal-02500568