6533b86cfe1ef96bd12c8af4
RESEARCH PRODUCT
Bayesian inference for the extremal dependence
Isadora Antoniano-villalobosGiulia MarconSimone A. Padoansubject
FOS: Computer and information sciencesStatistics and ProbabilityInferenceBernstein polynomialsBivariate analysisBayesian inference01 natural sciencesMethodology (stat.ME)Bayesian nonparametrics010104 statistics & probabilitysymbols.namesakeGeneralised extreme value distribution0502 economics and business62G07Applied mathematics62G05Degree of a polynomial0101 mathematicsStatistics - Methodology050205 econometrics MathematicsAngular measureMax-stable distributionGENERALISED EXTREME VALUE DISTRIBUTION EXTREMAL DEPENDENCE ANGULAR MEASURE MAX-STABLE DISTRIBUTION BERNSTEIN POLYNOMIALS BAYESIAN NONPARAMETRICS TRANS-DIMENSIONAL MCMC EXCHANGE RATEExchange rates05 social sciencesNonparametric statisticsMarkov chain Monte CarloBernstein polynomialGENERALISED EXTREME VALUE DISTRIBUTION; EXTREMAL DEPENDENCE; ANGULAR MEASURE; MAX-STABLE DISTRIBUTION; BERNSTEIN POLYNOMIALS; BAYESIAN NONPARAMETRICS; TRANS-DIMENSIONAL MCMC; EXCHANGE RATETrans-dimensional MCMCEXCHANGE RATEsymbolsStatistics Probability and UncertaintySettore SECS-S/01 - StatisticaMaximaExtremal dependence62G32description
A simple approach for modeling multivariate extremes is to consider the vector of component-wise maxima and their max-stable distributions. The extremal dependence can be inferred by estimating the angular measure or, alternatively, the Pickands dependence function. We propose a nonparametric Bayesian model that allows, in the bivariate case, the simultaneous estimation of both functional representations through the use of polynomials in the Bernstein form. The constraints required to provide a valid extremal dependence are addressed in a straightforward manner, by placing a prior on the coefficients of the Bernstein polynomials which gives probability one to the set of valid functions. The prior is extended to the polynomial degree, making our approach fully nonparametric. Although the analytical expression of the posterior is unknown, inference is possible via a trans-dimensional MCMC scheme. We show the efficiency of the proposed methodology by means of a simulation study. The extremal behaviour of log-returns of daily exchange rates between the Pound Sterling vs the U.S. Dollar and the Pound Sterling vs the Japanese Yen is analysed for illustrative purposes.
year | journal | country | edition | language |
---|---|---|---|---|
2016-01-07 | Electronic Journal of Statistics |