6533b86cfe1ef96bd12c8b1c
RESEARCH PRODUCT
Anomaly detection approach to keystroke dynamics based user authentication
Timo HämäläinenElena IvannikovaGil Davidsubject
ta113AuthenticationpääsynvalvontaComputer scienceaccess control02 engineering and technologycomputer.software_genreKeystroke dynamicstodentaminen020204 information systems0202 electrical engineering electronic engineering information engineeringBenchmark (computing)Unsupervised learningauthentication020201 artificial intelligence & image processingAnomaly detectionData miningtietoturvadata securitycomputerdescription
Keystroke dynamics is one of the authentication mechanisms which uses natural typing pattern of a user for identification. In this work, we introduced Dependence Clustering based approach to user authentication using keystroke dynamics. In addition, we applied a k-NN-based approach that demonstrated strong results. Most of the existing approaches use only genuine users data for training and validation. We designed a cross validation procedure with artificially generated impostor samples that improves the learning process yet allows fair comparison to previous works. We evaluated the methods using the CMU keystroke dynamics benchmark dataset. Both proposed approaches outperformed the previous state-of-the-art results for the CMU dataset for unsupervised learning. peerReviewed
year | journal | country | edition | language |
---|---|---|---|---|
2017-07-01 |