6533b86cfe1ef96bd12c8bc5

RESEARCH PRODUCT

Quantum simulation of the cooperative Jahn-Teller transition in 1D Ion crystals

Diego PorrasFerdinand Schmidt-kalerPeter A. IvanovPeter A. Ivanov

subject

Quantum phase transitionPhysicsMesoscopic physicsSpinsCondensed matter physicsJahn–Teller effectGeneral Physics and AstronomyQuantum simulatorFísica01 natural sciences010305 fluids & plasmasIon0103 physical sciencesCondensed Matter::Strongly Correlated Electrons010306 general physicsQuantumBoson

description

The Jahn-Teller effect explains distortions and nondegenerate energy levels in molecular and solid-state physics via a coupling of effective spins to collective bosons. Here we propose and theoretically analyze the quantum simulation of a many-body Jahn-Teller model with linear ion crystals subjected to magnetic field gradients. We show that the system undergoes a quantum magnetic structural phase transition which leads to a reordering of particle positions and the formation of a spin-phonon quasicondensate in mesoscopic ion chains.

10.1103/physrevlett.108.235701