0000000000338376

AUTHOR

Peter A. Ivanov

showing 5 related works from this author

Quantum gate in the decoherence-free subspace of trapped ion qubits

2009

We propose a geometric phase gate in a decoherence-free subspace with trapped ions. The quantum information is encoded in the Zeeman sublevels of the ground-state and two physical qubits to make up one logical qubit with ultra long coherence time. Single- and two-qubit operations together with the transport and splitting of linear ion crystals allow for a robust and decoherence-free scalable quantum processor. For the ease of the phase gate realization we employ one Raman laser field on four ions simultaneously, i.e. no tight focus for addressing. The decoherence-free subspace is left neither during gate operations nor during the transport of quantum information.

PhysicsCoherence timeQuantum PhysicsQuantum decoherenceFOS: Physical sciencesGeneral Physics and AstronomyQuantum Physics01 natural sciences010305 fluids & plasmasQuantum gateComputer Science::Emerging TechnologiesGeometric phaseQubitQuantum mechanics0103 physical sciencesQuantum informationQuantum Physics (quant-ph)010306 general physicsSubspace topologyQuantum computer
researchProduct

Quantum Sensors Assisted by Spontaneous Symmetry Breaking for Detecting Very Small Forces

2015

We propose a quantum-sensing scheme for measuring weak forces based on a symmetry-breaking adiabatic transition in the quantum Rabi model. We show that the system described by the Rabi Hamiltonian can serve as a sensor for extremely weak forces with sensitivity beyond the yoctonewton (yN) per sqrt (Hz) range. We propose an implementation of this sensing protocol using a single trapped ion. A major advantage of our scheme is that the force detection is performed by projective measurement of the population of the spin states at the end of the transition, instead of the far slower phonon number measurement used hitherto.

Physicseducation.field_of_studyPhononSpontaneous symmetry breakingPopulationQuantum sensorGeneral Physics and AstronomyWeak interaction01 natural sciences010305 fluids & plasmassymbols.namesakeQuantum mechanics0103 physical sciencessymbols010306 general physicseducationHamiltonian (quantum mechanics)Adiabatic processQuantumQCPhysical Review Applied
researchProduct

Colloquium: Trapped ions as quantum bits -- essential numerical tools

2009

Trapped, laser-cooled atoms and ions are quantum systems which can be experimentally controlled with an as yet unmatched degree of precision. Due to the control of the motion and the internal degrees of freedom, these quantum systems can be adequately described by a well known Hamiltonian. In this colloquium, we present powerful numerical tools for the optimization of the external control of the motional and internal states of trapped neutral atoms, explicitly applied to the case of trapped laser-cooled ions in a segmented ion-trap. We then delve into solving inverse problems, when optimizing trapping potentials for ions. Our presentation is complemented by a quantum mechanical treatment of…

Quantum opticsPhysicsCondensed Matter::Quantum GasesQuantum PhysicsFOS: Physical sciencesGeneral Physics and AstronomyQuantum simulator01 natural sciences010305 fluids & plasmasOpen quantum systemQuantum gateClassical mechanics0103 physical sciencesPersonal computerPhysics::Atomic PhysicsQuantum informationQuantum Physics (quant-ph)010306 general physicsWave functionTrapped ion quantum computer
researchProduct

Spin-1/2 sub-dynamics nested in the quantum dynamics of two coupled qutrits

2017

In this paper we investigate the quantum dynamics of two spin-1 systems, $\vec{\textbf{S}}_1$ and $\vec{\textbf{S}}_2$, adopting a generalized $(\vec{\textbf{S}}_1+\vec{\textbf{S}}_2)^2$-nonconserving Heisenberg model. We show that, due to its symmetry property, the nine-dimensional dynamics of the two qutrits exactly decouples into the direct sum of two sub-dynamics living in two orthogonal four- and five-dimensional subspaces. Such a reduction is further strengthened by our central result consisting in the fact that in the four-dimensional dynamically invariant subspace, the two qutrits quantum dynamics, with no approximations, is equivalent to that of two non interacting spin 1/2's. The …

Statistics and ProbabilityQuantum dynamicsGeneral Physics and AstronomyFOS: Physical sciencesquantum mechanicquantum entanglement01 natural sciencesSettore FIS/03 - Fisica Della Materia010305 fluids & plasmasReduction (complexity)Theoretical physicsPhysics and Astronomy (all)0103 physical sciencesMathematical Physic010306 general physicsMathematical PhysicsSpin-½symmetry-based emergence of qubit subdynamicPhysicsQuantum PhysicsDirect sumHeisenberg modeltwo coupled qutrit Hamiltonian modelInvariant subspaceStatistical and Nonlinear PhysicsLinear subspaceSymmetry (physics)Modeling and SimulationQuantum Physics (quant-ph)Statistical and Nonlinear Physic
researchProduct

Quantum simulation of the cooperative Jahn-Teller transition in 1D Ion crystals

2012

The Jahn-Teller effect explains distortions and nondegenerate energy levels in molecular and solid-state physics via a coupling of effective spins to collective bosons. Here we propose and theoretically analyze the quantum simulation of a many-body Jahn-Teller model with linear ion crystals subjected to magnetic field gradients. We show that the system undergoes a quantum magnetic structural phase transition which leads to a reordering of particle positions and the formation of a spin-phonon quasicondensate in mesoscopic ion chains.

Quantum phase transitionPhysicsMesoscopic physicsSpinsCondensed matter physicsJahn–Teller effectGeneral Physics and AstronomyQuantum simulatorFísica01 natural sciences010305 fluids & plasmasIon0103 physical sciencesCondensed Matter::Strongly Correlated Electrons010306 general physicsQuantumBoson
researchProduct