6533b86dfe1ef96bd12c918c

RESEARCH PRODUCT

Multiscale Topography Analysis of Waterjet Pocketing of Silica Glass Surfaces

A. BrientR. LanielM. MiroirG. Le GoicJean-christophe SangleboeufS. Samper

subject

[PHYS.MECA.GEME] Physics [physics]/Mechanics [physics]/Mechanical engineering [physics.class-ph][ PHYS.MECA.GEME ] Physics [physics]/Mechanics [physics]/Mechanical engineering [physics.class-ph][PHYS.MECA.GEME]Physics [physics]/Mechanics [physics]/Mechanical engineering [physics.class-ph]ComputingMilieux_MISCELLANEOUS

description

International audience; Glass workpieces are mainly planar and obtained by diamond cutting however if free-form surfaces are required, manufacturing process is usually based on shaping grinding wheels. Multi-axis waterjet cutting, an other means of obtaining planar workpieces, could also be used to machine complex shapes with appropriate manufacturing strategies. Water jet pocketing could also be achieved but it brings challenging issues since the high pressure jet composed of water and abrasive particles must be contained inside the machined pocket. Water jet glass machining optimization requires understanding of numerous parameters such as interaction between the jet and the brittle material behavior or the identification of the jet himself. We focus our investigation on bottom pocket surfaces to study these parameters. Pocket bottom surfaces are characterized by multi-scale defects: shape defects influenced by the tool path and the manufacturing strategy, macro-craters at waviness scale due to the jet interactions, micro-craters at roughness scale due to particles impacts, sub-surface damages (SSD) at micro- roughness scale. This paper focuses on the study of macro and micro craters. We propose a decomposition of the multi-scale defects using modal filtering. Residual topography will then be analyzed to characterize the surface damages.

https://hal.archives-ouvertes.fr/hal-01136081