6533b86dfe1ef96bd12c9f57
RESEARCH PRODUCT
Thermal potential of ion-exchange membranes and its application to thermoelectric power generation
Kyösti KontturiLasse MurtomäkiMiikka JokinenJosé A. ManzanaresJosé A. Manzanaressubject
TRANSPORTED ENTROPYNon-isothermal electrodiffusionHALIDE SOLUTIONSThermodynamicsFiltration and Separation02 engineering and technologyElectrolyte010402 general chemistry01 natural sciencesBiochemistrySeebeck coefficientThermoelectric effectAQUEOUS-SOLUTIONSGeneral Materials SciencePhysical and Theoretical ChemistryPolarization (electrochemistry)NONISOTHERMAL SYSTEMSta116Concentration polarizationIonic heat of transportChemistryTEMPERATURE POLARIZATIONThermal membrane potentialThermoelectric power generation021001 nanoscience & nanotechnologyThermoelectric materialsELECTROLYTE-SOLUTIONSSODIUM-CHLORIDE0104 chemical sciencesIonic Seebeck coefficientThermoelectric generatorMembraneMASS-TRANSPORTIon-exchange membranes0210 nano-technologyCHARGED MEMBRANESSORET COEFFICIENTSdescription
The low efficiency and high price of thermoelectric semiconductors has generated interest in unconventional forms of thermoelectric materials. In this article, ionic thermoelectricity has been studied with commercial ion-exchange membranes for different aqueous 1:1 electrolytes. The theory of thermal membrane potential has been derived taking into account the ionic heats of transport, the non-isothermal Donnan potentials, the temperature polarization, and the thermally-induced concentration polarization of the electrolyte. Also the generated thermoelectric power has been experimentally studied. The experiments show good agreement with the theory, and suggest ways for systematic improvement of the system performance. (C) 2015 Elsevier B.V. All rights reserved. Peer reviewed
year | journal | country | edition | language |
---|---|---|---|---|
2016-02-01 | JOURNAL OF MEMBRANE SCIENCE |