6533b86dfe1ef96bd12ca010

RESEARCH PRODUCT

Memory-enhancing and brain protein expression-stimulating effects of novel calcium antagonist in Alzheimer’s disease transgenic female mice

Karlis PajusteVija KlusaBaiba JansoneUlrika BeitnereThomas Van GroenInga KadishAiva Plotniece

subject

Male0301 basic medicineCingulate cortexDihydropyridinesmedicine.medical_specialtyElevated plus mazeVesicular Inhibitory Amino Acid Transport ProteinsHippocampusMice TransgenicWater mazeBiologyHippocampal formationGyrus CinguliHippocampusArticleAmyloid beta-Protein PrecursorMice03 medical and health sciences0302 clinical medicineAlzheimer DiseaseMemoryInternal medicineNeuroplasticitymedicineAnimalsGABAergic NeuronsMaze LearningPharmacologyAmyloid beta-PeptidesNeuronal PlasticityGlutamate DecarboxylaseCalcium Channel BlockersUp-RegulationDisease Models Animal030104 developmental biologyEndocrinologyAnti-Anxiety AgentsBlood-Brain BarrierSynaptic plasticityGABAergicCalciumFemale030217 neurology & neurosurgery

description

The prevalence of Alzheimer's disease (AD) is higher in females than in males, and causes more severe cognitive, memory and behavioral impairments. Previously, in male transgenic (Tg) APPSweDI mice, we reported that the novel lipophilic 1,4-dihydropyridine (DHP) derivative AP-12 crossed the blood-brain barrier, blocked neuronal and vascular calcium channels, changed brain protein expression and improved behavior. In this study, we used female Tg APPSweDI mice to assess the effects of AP-12 on behavior, and brain protein expression, with a particular focus on those of the GABAergic system. The results showed that in female Tg mice, similar to male Tg mice, AP-12 improved spatial learning/memory performance in the water maze test and demonstrated anxiolytic effect in the elevated zero maze (after single administration of AP-12) and elevated plus maze (after chronic injections of AP-12). In addition, we demonstrated upregulated expression of glutamate decarboxylase 67 (GAD67) and vesicular GABA transporter (VGAT) in the cingulate cortex and hippocampus, pointing to the role of the GABAergic system as one of the neural networks dysregulated in AD. In both female and male mice, AP-12 did not change the expression of hippocampal Homer-1, a protein which is involved in synaptic plasticity. However, in cingulate cortex, the staining density of Homer-1 was significantly increased in female mice. Further, female mice (similar to male mice) did not show changes in brain AChE expression and in the amyloid beta load in the hippocampus and cingulate cortex. In conclusion, the memory enhancing, anxiolytic and protein expression effects of AP-12 did not show sex specificity in APPSweDI mice. Considering the ability of AP-12 to block brain calcium channels and improve memory by enhancing the GABAergic and synaptic plasticity processes, AP-12 is a promising compound which merits further pre-clinical studies to investigate its usefulness in the treatment of AD.

https://doi.org/10.1016/j.phrs.2016.06.020