6533b86dfe1ef96bd12ca026

RESEARCH PRODUCT

Adversary Lower Bound for the k-sum Problem

Aleksandrs BelovsRobert Spalek

subject

FOS: Computer and information sciencesDiscrete mathematicsQuantum queryQuantum PhysicsFOS: Physical sciencesComputational Complexity (cs.CC)AdversaryOmegaUpper and lower boundsCombinatoricsComputer Science - Computational ComplexityOrthogonal arrayAlphabetQuantum Physics (quant-ph)Computer Science::Formal Languages and Automata TheoryMathematics

description

We prove a tight quantum query lower bound $\Omega(n^{k/(k+1)})$ for the problem of deciding whether there exist $k$ numbers among $n$ that sum up to a prescribed number, provided that the alphabet size is sufficiently large. This is an extended and simplified version of an earlier preprint of one of the authors arXiv:1204.5074.

http://arxiv.org/abs/1206.6528