6533b86dfe1ef96bd12ca15d

RESEARCH PRODUCT

Orbits of bounded bijective operators and Gabor frames

Rosario Corso

subject

Context (language use)01 natural sciencessymbols.namesakeOperator (computer programming)WaveletOperator representation of framesSettore MAT/05 - Analisi Matematica0103 physical sciencesFOS: MathematicsOrthonormal basis0101 mathematicsRepresentation (mathematics)MathematicsDiscrete mathematicsBounded bijective operatorsApplied Mathematics010102 general mathematicsHilbert spaceFunctional Analysis (math.FA)Mathematics - Functional AnalysisBounded functionsymbolsBijection010307 mathematical physics42C15 94A20Gabor frames

description

This paper is a contribution to frame theory. Frames in a Hilbert space are generalizations of orthonormal bases. In particular, Gabor frames of $L^2(\mathbb{R})$, which are made of translations and modulations of one or more windows, are often used in applications. More precisely, the paper deals with a question posed in the last years by Christensen and Hasannasab about the existence of overcomplete Gabor frames, with some ordering over $\mathbb{Z}$, which are orbits of bounded operators on $L^2(\mathbb{R})$. Two classes of overcomplete Gabor frames which cannot be ordered over $\mathbb{Z}$ and represented by orbits of operators in $GL(L^2(\mathbb{R}))$ are given. Some results about operator representation are stated in a general context for arbitrary frames, covering also certain wavelet frames.

https://doi.org/10.1007/s10231-020-00988-1