6533b86dfe1ef96bd12ca793

RESEARCH PRODUCT

Estimating the geometric median in Hilbert spaces with stochastic gradient algorithms: Lp and almost sure rates of convergence

Antoine Godichon-baggioni

subject

Statistics and ProbabilityNumerical AnalysisRobust statisticsHilbert spaceEstimatorContext (language use)010103 numerical & computational mathematicsGeometric median01 natural sciencesSeparable space010104 statistics & probabilitysymbols.namesakeLaw of large numbersConvergence (routing)symbols0101 mathematicsStatistics Probability and UncertaintyAlgorithmMathematics

description

The geometric median, also called L 1 -median, is often used in robust statistics. Moreover, it is more and more usual to deal with large samples taking values in high dimensional spaces. In this context, a fast recursive estimator has been introduced by Cardot et?al. (2013). This work aims at studying more precisely the asymptotic behavior of the estimators of the geometric median based on such non linear stochastic gradient algorithms. The L p rates of convergence as well as almost sure rates of convergence of these estimators are derived in general separable Hilbert spaces. Moreover, the optimal rates of convergence in quadratic mean of the averaged algorithm are also given.

https://doi.org/10.1016/j.jmva.2015.09.013