6533b86dfe1ef96bd12ca936

RESEARCH PRODUCT

Pyrrolo[3',2':6,7]cyclohepta[1,2-b]pyridines with potent photo-antiproliferative activity.

Mauro FrecceroAlessia SalvadorAnna CarboneAlessandra MontalbanoDaniele GiallombardoIlaria FrassonVincenzo CilibrasiGirolamo CirrincionePatrizia DianaStella CascioferroVirginia SpanòPaola BarrajaSara N. RichterBarbara ParrinoFilippo Doria

subject

0301 basic medicineLightPyridines01 natural sciencesAntioxidantschemistry.chemical_compound7]cyclohepta[1NeoplasmsDrug DiscoveryTumor Cells CulturedMoietyPyrrolechemistry.chemical_classificationPhotosensitizing AgentsGeneral MedicinePhotosensitizing AgentPyrrolo[3′2′:67]cyclohepta[12-b]pyridine-9(1H)-oneReactive oxygen speciemedicine.symptomPhototoxicity2-b]pyridine-9(1H)-onesStereochemistryBlotting WesternPhoto-antiproliferative activityAntineoplastic AgentsRing (chemistry)Phototoxicity03 medical and health sciencesStructure-Activity RelationshipPyridinemedicineHumansPyrrolo[3′PyrrolesCell ProliferationPharmacologyPhotosensitizing agent010405 organic chemistry2′:6Drug Discovery3003 Pharmaceutical ScienceOrganic ChemistryPhoto-antiproliferative activity; Photosensitizing agents; Phototoxicity; Pyrrolo[3′2′:67]cyclohepta[12-b]pyridine-9(1H)-ones; Reactive oxygen species; Pharmacology; Drug Discovery3003 Pharmaceutical Science; Organic ChemistryCombinatorial chemistry0104 chemical sciences030104 developmental biologychemistryMechanism of actionPhoto-antiproliferative activity; Photosensitizing agents; Phototoxicity; Pyrrolo[3′; 2′:6; 7]cyclohepta[1; 2-b]pyridine-9(1H)-ones; Reactive oxygen species; Pharmacology; Drug Discovery3003 Pharmaceutical Science; Organic ChemistryDrug Screening Assays AntitumorReactive Oxygen SpeciesTricyclic

description

Abstract Pyrrolo[3′,2′:6,7]cyclohepta[1,2-b]pyridines were synthesized as a new class of tricyclic system in which the pyridine ring is annelated to a cycloheptapyrrole scaffold, with the aim of obtaining new photosensitizing agents with improved antiproliferative activity and lower undesired toxic effects. A versatile synthetic pathway was approached, which allowed the isolation of derivatives of the title ring system with a good substitution pattern on the pyrrole moiety. Photobiological studies revealed that the majority of the new compounds showed a potent cytotoxic effect upon photoactivation with light of the proper wavelength, especially when decorated with a 2-ethoxycabonyl group and a N-benzyl substituted moiety, with EC50 values reaching the submicromolar level. The mechanism of action was evaluated.

10.1016/j.ejmech.2017.02.008https://pubmed.ncbi.nlm.nih.gov/28213283