6533b86dfe1ef96bd12ca974

RESEARCH PRODUCT

On algebras of polynomial codimension growth

Daniela La Mattina

subject

Discrete mathematicsPolynomialSequenceMathematics::Commutative AlgebraGeneral Mathematics010102 general mathematicsZero (complex analysis)Field (mathematics)Codimension01 natural sciencesSettore MAT/02 - AlgebraComputational Theory and MathematicsBounded function0103 physical sciencesAssociative algebraPolynomial identities Codimensions Codimension growth010307 mathematical physics0101 mathematicsStatistics Probability and UncertaintyMathematics

description

Let A be an associative algebra over a field F of characteristic zero and let $$c_n(A), n=1, 2, \ldots $$ , be the sequence of codimensions of A. It is well-known that $$c_n(A), n=1, 2, \ldots $$ , cannot have intermediate growth, i.e., either is polynomially bounded or grows exponentially. Here we present some results on algebras whose sequence of codimensions is polynomially bounded.

https://doi.org/10.1007/s40863-016-0051-7