6533b86dfe1ef96bd12ca9a5

RESEARCH PRODUCT

On Dealing with Uncertainties from Kriging Models in Offline Data-Driven Evolutionary Multiobjective Optimization

Kaisa MiettinenManuel López-ibáñezAtanu MazumdarTinkle Chugh

subject

Pareto optimalitymallintaminenMathematical optimizationOptimization problemComputer scienceetamodelling02 engineering and technologyMulti-objective optimizationTheoretical Computer ScienceData-drivensymbols.namesakeSurrogate modelMetamodellingKriging020204 information systemsMachine learning0202 electrical engineering electronic engineering information engineeringsurrogateGaussian process/dk/atira/pure/subjectarea/asjc/1700Gaussian processpareto-tehokkuusmonitavoiteoptimointikoneoppiminensymbolsBenchmark (computing)/dk/atira/pure/subjectarea/asjc/2600/2614020201 artificial intelligence & image processingnormaalijakaumaComputer Science(all)

description

Many works on surrogate-assisted evolutionary multiobjective optimization have been devoted to problems where function evaluations are time-consuming (e.g., based on simulations). In many real-life optimization problems, mathematical or simulation models are not always available and, instead, we only have data from experiments, measurements or sensors. In such cases, optimization is to be performed on surrogate models built on the data available. The main challenge there is to fit an accurate surrogate model and to obtain meaningful solutions. We apply Kriging as a surrogate model and utilize corresponding uncertainty information in different ways during the optimization process. We discuss experimental results obtained on benchmark multiobjective optimization problems with different sampling techniques and numbers of objectives. The results show the effect of different ways of utilizing uncertainty information on the quality of solutions. peerReviewed

http://urn.fi/URN:NBN:fi:jyu-201903221932