6533b86dfe1ef96bd12cab0f
RESEARCH PRODUCT
Smooth surjections and surjective restrictions
Richard M. AronJesús A. JaramilloEnrico Le Donnesubject
TopologíaPure mathematicsmetric spaces46B80 46T20General Mathematicssmooth surjective mappingBanach spacesurjective restrictionnonlinear quotient01 natural sciencesfunctional analysisSurjective functionuniformly open mapMathematics - Metric GeometryFOS: MathematicsMathematics (all)Order (group theory)Countable set0101 mathematicsAnálisis funcional y teoría de operadoresDensity character; Nonlinear quotient; Smooth surjective mapping; Surjective restriction; Uniformly open map; Mathematics (all)MathematicsEuclidean spaceta111010102 general mathematicsMetric Geometry (math.MG)16. Peace & justicemetriset avaruudetFunctional Analysis (math.FA)Mathematics - Functional Analysis010101 applied mathematicsCharacter (mathematics)density characterfunktionaalianalyysiBijection injection and surjectionSubspace topologydescription
Given a surjective mapping $f : E \to F$ between Banach spaces, we investigate the existence of a subspace $G$ of $E$, with the same density character as $F$, such that the restriction of $f$ to $G$ remains surjective. We obtain a positive answer whenever $f$ is continuous and uniformly open. In the smooth case, we deduce a positive answer when $f$ is a $C^1$-smooth surjection whose set of critical values is countable. Finally we show that, when $f$ takes values in the Euclidean space $\mathbb R^n$, in order to obtain this result it is not sufficient to assume that the set of critical values of $f$ has zero-measure.
year | journal | country | edition | language |
---|---|---|---|---|
2017-01-01 |