6533b86efe1ef96bd12cac1f
RESEARCH PRODUCT
Breaking of SU(4) symmetry and interplay between strongly correlated phases in the Hubbard model
Agnieszka CichyAgnieszka CichyJan KunešAndrii SotnikovWalter HofstetterAnna GolubevaAnna Golubevasubject
Condensed Matter::Quantum GasesPhysicsStrongly Correlated Electrons (cond-mat.str-el)Hubbard modelCondensed matter physicsFOS: Physical sciencesObservableSimple cubic lattice01 natural sciences010305 fluids & plasmasCondensed Matter - Strongly Correlated ElectronsQuantum Gases (cond-mat.quant-gas)Quantum mechanics0103 physical sciencesHomogeneous spaceCondensed Matter - Quantum Gases010306 general physicsdescription
We study the thermodynamic properties of four-component fermionic mixtures described by the Hubbard model using the dynamical mean-field-theory approach. Special attention is given to the system with SU(4)-symmetric interactions at half filling, where we analyze equilibrium many-body phases and their coexistence regions at nonzero temperature for the case of simple cubic lattice geometry. We also determine the evolution of observables in low-temperature phases while lowering the symmetry of the Hamiltonian towards the two-band Hubbard model. This is achieved by varying interflavor interactions or by introducing the spin-flip term (Hund's coupling). By calculating the entropy for different symmetries of the model, we determine the optimal regimes for approaching the studied phases in experiments with ultracold alkali and alkaline-earth-like atoms in optical lattices.
year | journal | country | edition | language |
---|---|---|---|---|
2016-12-19 | Physical Review B |