0000000000335783

AUTHOR

Walter Hofstetter

Transport of Strongly Correlated Bosons in an Optical Lattice

research product

Emulating Solid-State Physics with a Hybrid System of Ultracold Ions and Atoms

We propose and theoretically investigate a hybrid system composed of a crystal of trapped ions coupled to a cloud of ultracold fermions. The ions form a periodic lattice and induce a band structure in the atoms. This system combines the advantages of scalability and tunability of ultracold atomic systems with the high fidelity operations and detection offered by trapped ion systems. It also features close analogies to natural solid-state systems, as the atomic degrees of freedom couple to phonons of the ion lattice, thereby emulating a solid-state system. Starting from the microscopic many-body Hamiltonian, we derive the low energy Hamiltonian including the atomic band structure and give an…

research product

Néel Transition of Lattice Fermions in a Harmonic Trap: A Real-Space Dynamic Mean-Field Study

We study the magnetic ordering transition for a system of harmonically trapped ultracold fermions with repulsive interactions in a cubic optical lattice, within a real-space extension of dynamical mean-field theory. Using a quantum Monte Carlo impurity solver, we establish that antiferromagnetic correlations are signaled, at strong coupling, by an enhanced double occupancy. This signature is directly accessible experimentally and should be observable well above the critical temperature for long-range order. Dimensional aspects appear less relevant than naively expected.

research product

Breaking of SU(4) symmetry and interplay between strongly correlated phases in the Hubbard model

We study the thermodynamic properties of four-component fermionic mixtures described by the Hubbard model using the dynamical mean-field-theory approach. Special attention is given to the system with SU(4)-symmetric interactions at half filling, where we analyze equilibrium many-body phases and their coexistence regions at nonzero temperature for the case of simple cubic lattice geometry. We also determine the evolution of observables in low-temperature phases while lowering the symmetry of the Hamiltonian towards the two-band Hubbard model. This is achieved by varying interflavor interactions or by introducing the spin-flip term (Hund's coupling). By calculating the entropy for different s…

research product