6533b86efe1ef96bd12cb23b
RESEARCH PRODUCT
Affinity Cleavage of Carbamoyl-Phosphate Synthetase I Localizes Regions of the Enzyme Interacting with the Molecule of ATP that Phosphorylates Carbamate
Eulalia AlonsoEulalia AlonsoVicente Rubiosubject
chemistry.chemical_classificationbiologyChemistryProtein domainCarbamate kinaseCleavage (embryo)BiochemistryCarbamoyl phosphate synthetase IAmino acidBiochemistrybiology.proteinMoietyNucleotideBinding sitedescription
Two ATP molecules are used in the reaction catalyzed by carbamoyl-phosphate synthetase I. One molecule (ATPA) phosphorylates HCO3- and the other (ATPB) phosphorylates carbamate. Carbamoyl-phosphate synthetase I is a 160-kDa polypeptide consisting of a 40-kDa N-terminal moiety and a 120-kDa C-terminal moiety, the latter being composed of two similar halves of molecular mass 60 kDa. We showed [Alonso, E., Cervera, J., Garcia-Espana, A., Bendala, E. & Rubio, V. (1992) J. Biol. Chem. 267, 4524-4532] that Fe.ATP bound at the site for ATPB catalyzes the oxidative inactivation of carbamoyl-phosphate synthetase I in a model oxidative system consisting of Fe3+, ascorbate, and O2, and we detected ATP-promoted oxidative cleavage of the enzyme. We now provide further evidence indicating that this cleavage is catalyzed by bound Fe.ATPB, and we demonstrate that the enzyme is cleaved at seven points, which we identify as residues 1002, 1064, 1083, 1128, 1200, 1242, and 1270. All these cleavage points are confined within and distributed throughout the more N-terminal 40-kDa region of the C-terminus of the 120-kDa moiety. Thus, this 40-kDa region contains the ATPB site, is folded as a globular domain with the polypeptide recurring several times towards the nucleotide, and appears to be a modular unit equivalent to carbamate kinase, with full responsibility for ATPB binding and carbamate phosphorylation. The present results and our previous demonstration [Rodriguez-Aparicio, L., Guadalajara, A.M. & Rubio, V. (1989) Biochemistry 28, 3070-3074] of the binding of N-acetyl-L-glutamate in the C-terminal 20-kDa region, strongly support the idea that each homologous half of the 120-kDa moiety of carbamoyl-phosphate synthetase I is composed of a 40-kDa ATP-binding domain and a 20-kDa domain that, in the carboxyl half, is the regulatory domain.
year | journal | country | edition | language |
---|---|---|---|---|
1995-04-01 | European Journal of Biochemistry |