6533b86efe1ef96bd12cb3d0

RESEARCH PRODUCT

Formation of ultrashort triangular pulses in optical fibers

Miguel V. AndrésH. SayincIgor A. SukhoivanovOleksiy V. ShulikaVolodymyr I. FesenkoSergii O. Iakushev

subject

Femtosecond pulse shapingMaterials scienceFrequency-resolved optical gatingbusiness.industryLasersSingle-mode optical fiberPhysics::OpticsSignal Processing Computer-AssistedEquipment DesignÒpticaPulse shapingAtomic and Molecular Physics and OpticsOpticsMultiphoton intrapulse interference phase scanChirpTelecommunicationsComputer-Aided DesignFiber Optic TechnologybusinessUltrashort pulseBandwidth-limited pulseOptical Fibers

description

Specialty shape ultrashort optical pulses, and triangular pulses in particular, are of great interest in optical signal processing. Compact fiber-based techniques for producing the special pulse waveforms from Gaussian or secant pulses delivered by modern ultrafast lasers are in demand in telecommunications. Using the nonlinear Schr¨odinger equation in an extended form the transformation of ultrashort pulses in a fiber towards triangular shape is characterized by the misfit parameter under variety of incident pulse shapes, energies, and chirps. It is shown that short (1-2 m) conventional single mode fiber can be used for triangular pulse formation in the steady-state regime without any pre-chirping if femtosecond pulses are used for pumping. The pulses obtained are stable and demonstrate linear chirp. The ranges and combinations of the pulse parameters found here will serve as a guide for scheduling the experiments and implementation of various all-fiber schemes for optical signal processing.

10.1364/oe.22.029119https://hdl.handle.net/10550/81921