6533b86efe1ef96bd12cb3ec

RESEARCH PRODUCT

Arctic black carbon during PAMARCMiP 2018 and previous aircraft experiments in spring

S. OhataS. OhataM. KoikeA. YoshidaA. YoshidaN. MotekiK. AdachiN. OshimaH. MatsuiO. EppersO. EppersH. BozemM. ZanattaM. ZanattaA. B. Herber

subject

Atmospheric Sciencegeographygeography.geographical_feature_category010504 meteorology & atmospheric sciencesField experimentPhysicsQC1-999010501 environmental sciencesAtmospheric sciences01 natural sciencesTroposphereChemistryAltitudeArctic13. Climate actionMiddle latitudesSpring (hydrology)Environmental scienceMass concentration (chemistry)Climate modelQD1-9990105 earth and related environmental sciences

description

Vertical profiles of the mass concentration of black carbon (BC) were measured at altitudes up to 5 km during the PAMARCMiP (Polar Airborne Measurements and Arctic Regional Climate Model simulation Project) aircraft-based field experiment conducted around the northern Greenland Sea (Fram Strait) during March and April 2018 from operation base Station Nord (81.6∘ N, 16.7∘ W). Median BC mass concentrations in individual altitude ranges were 7–18 ng m−3 at standard temperature and pressure at altitudes below 4.5 km. These concentrations were systematically lower than previous observations in the Arctic in spring, conducted by ARCTAS-A in 2008 and NETCARE in 2015, and similar to those observed during HIPPO3 in 2010. Column amounts of BC for altitudes below 5 km in the Arctic (>66.5∘ N; COLBC), observed during the ARCTAS-A and NETCARE experiments, were higher by factors of 4.2 and 2.7, respectively, than those of the PAMARCMiP experiment. These differences could not be explained solely by the different locations of the experiments. The year-to-year variation of COLBC values generally corresponded to that of biomass burning activities in northern midlatitudes over western and eastern Eurasia. Furthermore, numerical model simulations estimated the year-to-year variation of contributions from anthropogenic sources to be smaller than 30 %–40 %. These results suggest that the year-to-year variation of biomass burning activities likely affected BC amounts in the Arctic troposphere in spring, at least in the years examined in this study. The year-to-year variations in BC mass concentrations were also observed at the surface at high Arctic sites Ny-Ålesund and Utqiaġvik (formerly known as Barrow, the location of Barrow Atmospheric Baseline Observatory), although their magnitudes were slightly lower than those in COLBC. Numerical model simulations in general successfully reproduced the observed COLBC values for PAMARCMiP and HIPPO3 (within a factor of 2), whereas they markedly underestimated the values for ARCTAS-A and NETCARE by factors of 3.7–5.8 and 3.3–5.0, respectively. Because anthropogenic contributions account for nearly all of the COLBC (82 %–98 %) in PAMARCMiP and HIPPO3, the good agreement between the observations and calculations for these two experiments suggests that anthropogenic contributions were generally well reproduced. However, the significant underestimations of COLBC for ARCTAS-A and NETCARE suggest that biomass burning contributions were underestimated. In this study, we also investigated plumes with enhanced BC mass concentrations, which were affected by biomass burning emissions, observed at 5 km altitude. Interestingly, the mass-averaged diameter of BC (core) and the shell-to-core diameter ratio of BC-containing particles in the plumes were generally not very different from those in other air samples, which were considered to be mostly aged anthropogenic BC. These observations provide a useful basis to evaluate numerical model simulations of the BC radiative effect in the Arctic region in spring.

https://doi.org/10.5194/acp-2021-349