6533b86efe1ef96bd12cb62c
RESEARCH PRODUCT
Systematic gene overexpression in Candida albicans identifies a regulator of early adaptation to the mammalian gut.
Thierry JouaultFrédéric DalleSophie Bachellier-bassiRalitsa AtanassovaFrédéric VincentValérie GouyerChristophe D'enfertCarol A. MunroNatacha SertourJean-luc DesseynSadri ZnaidiSadri ZnaidiArturo Hernández-cervantesMarie-elisabeth BougnouxMarie-elisabeth BougnouxLasse Van Wijlicksubject
0301 basic medicine[SDV.MHEP.AHA] Life Sciences [q-bio]/Human health and pathology/Tissues and Organs [q-bio.TO]030106 microbiologyImmunologyMicrobiologyMannosyltransferasesBiological pathwayTranscriptomeFungal ProteinsMannans03 medical and health scienceschemistry.chemical_compoundtranscriptomicsregulatory networksCell WallVirologyGene Expression Regulation FungalCandida albicanssignature‐tagged overexpression[SDV.MHEP.AHA]Life Sciences [q-bio]/Human health and pathology/Tissues and Organs [q-bio.TO]AnimalsGene Regulatory NetworksCandida albicansPromoter Regions GeneticGeneTranscription factorResearch ArticlesFungal proteinMice Inbred BALB CCRZ2chromatin immunoprecipitation‐on‐chipbiologyCRZ2;Candida albicans;chromatin immunoprecipitation-on-chip;gastrointestinal colonisation;regulatory networks;signature-tagged overexpression;transcriptomicsTunicamycinTunicamycinHydrogen-Ion Concentrationbiology.organism_classificationPhenotypeCell biologyGastrointestinal MicrobiomeGastrointestinal Tractchemistrychromatin immunoprecipitation-on-chipFemalesignature-tagged overexpressionMicroorganisms Genetically-Modifiedgastrointestinal colonisationResearch Articledescription
International audience; Candida albicans is part of the human gastrointestinal (GI) microbiota. To better understand how C. albicans efficiently establishes GI colonisation, we competitively challenged growth of 572 signature-tagged strains (~10% genome coverage), each conditionally overexpressing a single gene, in the murine gut. We identified CRZ2, a transcription factor whose overexpression and deletion respectively increased and decreased early GI colonisation. Using clues from genome-wide expression and gene-set enrichment analyses, we found that the optimal activity of Crz2p occurs under hypoxia at 37°C, as evidenced by both phenotypic and transcriptomic analyses following CRZ2 genetic perturbation. Consistent with early colonisation of the GI tract, we show that CRZ2 overexpression confers resistance to acidic pH and bile salts, suggesting an adaptation to the upper sections of the gut. Genome-wide location analyses revealed that Crz2p directly modulates the expression of many mannosyltransferase- and cell-wall protein-encoding genes, suggesting a link with cell-wall function. We show that CRZ2 overexpression alters cell-wall phosphomannan abundance and increases sensitivity to tunicamycin, suggesting a role in protein glycosylation. Our study reflects the powerful use of gene overexpression as a complementary approach to gene deletion to identify relevant biological pathways involved in C. albicans interaction with the host environment.
year | journal | country | edition | language |
---|---|---|---|---|
2018-07-11 |