6533b86efe1ef96bd12cbe70

RESEARCH PRODUCT

Maximal subgroups of small index of finite almost simple groups

Ramon Esteban RomeroAdolfo Ballester-bolinchesPaz Jiménez-seral

subject

Computational MathematicsMathematics::Group Theory20E28 20E32 20B15Algebra and Number TheoryMathematics::ProbabilityApplied MathematicsFOS: MathematicsGeometry and TopologyGroup Theory (math.GR)Mathematics::Representation TheoryMatemàticaMathematics - Group TheoryAnalysis

description

We prove in this paper that a finite almost simple group $R$ with socle the non-abelian simple group $S$ possesses a conjugacy class of core-free maximal subgroups whose index coincides with the smallest index $\operatorname{l}(S)$ of a maximal group of $S$ or a conjugacy class of core-free maximal subgroups with a fixed index $v_S \leq {\operatorname{l}(S)^2}$, depending only on $S$. We show that the number of subgroups of the outer automorphism group of $S$ is bounded by $\log^3 {\operatorname{l}(S)}$ and $\operatorname{l}(S)^2 < |S|$.

https://dx.doi.org/10.48550/arxiv.2203.16976