6533b86efe1ef96bd12cc037
RESEARCH PRODUCT
Spin-Wave Driven Bidirectional Domain Wall Motion in Kagome Antiferromagnets
Akshaykumar SalimathDavi R. RodriguesKjetil M. D. HalsKarin Everschor-sittesubject
CouplingPhysicsCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsLinear polarizationMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and AstronomyEquations of motionPhysik (inkl. Astronomie)Domain wall (string theory)Spin waveMesoscale and Nanoscale Physics (cond-mat.mes-hall)Domain (ring theory)AntiferromagnetismCondensed Matter::Strongly Correlated ElectronsSpin-½description
We predict a mechanism to controllably manipulate domain walls in kagome antiferromagnets via a single linearly polarized spin-wave source. We show by means of atomistic spin dynamics simulations of antiferromagnets with kagome structure that the speed and direction of the domain wall motion can be regulated by only tuning the frequency of the applied spin-wave. Starting from microscopics, we establish an effective action and derive the corresponding equations of motion for the spin-wave-driven domain wall. Our analytical calculations reveal that the coupling of two spin-wave modes inside the domain wall explains the frequency-dependent velocity of the spin texture. Such a highly tunable spin-wave-induced domain wall motion provides a key component toward next-generation fast, energy-efficient, and Joule-heating-free antiferromagnetic insulator devices.
year | journal | country | edition | language |
---|---|---|---|---|
2021-04-21 |