6533b86efe1ef96bd12cc97b

RESEARCH PRODUCT

A spectral approach to a constrained optimization problem for the Helmholtz equation in unbounded domains

Francesco GarganoGiulio CiraoloVincenzo Sciacca

subject

Helmholtz equationApplied MathematicsMathematical analysisTransparent boundary conditionComputational mathematicsFOS: Physical sciencesNumerical Analysis (math.NA)Mathematical Physics (math-ph)Electric-field integral equationComputational MathematicsCollocation methodConvergence (routing)Computational MathematicFOS: MathematicsMathematics - Numerical AnalysisBoundary value problemHelmholtz equationMinimization of integral functionalSpectral methodSpectral methodConstant (mathematics)Mathematical PhysicsMathematics

description

We study some convergence issues for a recent approach to the problem of transparent boundary conditions for the Helmholtz equation in unbounded domains (Ciraolo et al. in J Comput Phys 246:78–95, 2013) where the index of refraction is not required to be constant at infinity. The approach is based on the minimization of an integral functional, which arises from an integral formulation of the radiation condition at infinity. In this paper, we implement a Fourier–Chebyshev collocation method to study some convergence properties of the numerical algorithm; in particular, we give numerical evidence of some convergence estimates available in the literature (Ciraolo in Helmholtz equation in unbounded domains: some convergence results for a constrained optimization problem, 2013) and study numerically the minimization problem at low and mid-high frequencies. Numerical examples in some relevant cases are also shown.

https://dx.doi.org/10.48550/arxiv.1401.5673