6533b86efe1ef96bd12cca22

RESEARCH PRODUCT

Learning Automata-based Misinformation Mitigation via Hawkes Processes

Ole-christoffer GranmoAhmed AbouzeidChristian WebersikMorten Goodwin

subject

Computer Networks and CommunicationsComputer scienceDistributed computingStochastic optimizationSocial media Misinformation02 engineering and technologyCrisis mitigationArticleTheoretical Computer ScienceLearning automata020204 information systemsConvergence (routing)0202 electrical engineering electronic engineering information engineeringState spaceSocial mediaMisinformationVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550Social networkLearning automatabusiness.industryAutomaton020201 artificial intelligence & image processingStochastic optimizationbusinessHawkes processesSoftwareInformation Systems

description

AbstractMitigating misinformation on social media is an unresolved challenge, particularly because of the complexity of information dissemination. To this end, Multivariate Hawkes Processes (MHP) have become a fundamental tool because they model social network dynamics, which facilitates execution and evaluation of mitigation policies. In this paper, we propose a novel light-weight intervention-based misinformation mitigation framework using decentralized Learning Automata (LA) to control the MHP. Each automaton is associated with a single user and learns to what degree that user should be involved in the mitigation strategy by interacting with a corresponding MHP, and performing a joint random walk over the state space. We use three Twitter datasets to evaluate our approach, one of them being a new COVID-19 dataset provided in this paper. Our approach shows fast convergence and increased valid information exposure. These results persisted independently of network structure, including networks with central nodes, where the latter could be the root of misinformation. Further, the LA obtained these results in a decentralized manner, facilitating distributed deployment in real-life scenarios.

10.1007/s10796-020-10102-8https://hdl.handle.net/11250/3070107