6533b86ffe1ef96bd12cd0d2
RESEARCH PRODUCT
Projective Geometry on Modular Lattices
Marcus GreferathUlrich BrehmStefan E. Schmidtsubject
Discrete mathematicsPure mathematicsCollineationHigh Energy Physics::LatticeDuality (projective geometry)Ordered geometryProjective spaceErlangen programProjective differential geometryMap of latticesMathematicsProjective geometrydescription
Publisher Summary This chapter focuses on projective geometry on modular lattices. Incidence and Order are basic concepts for a foundation of modern synthetic geometry. These concepts describe the relative location or containment of geometric objects and have led to different lines of geometry, an incidence-geometric and a lattice-theoretic one. Modularity is one of the fundamental properties of classical projective geometry. It makes projections into join-preserving mappings and yields perspectivities to be (interval) isomorphisms. It is therefore natural that order-theoretic generalizations of projective geometry are based on modular lattices and even more, the theory of modular lattices may be considered as a most general concept of projective geometry. In particular, the partially ordered set of all submodules of a module forms a (complete) modular lattice; even more general, any sublattice of the lattice of all normal subgroups of a group is a modular lattice. It considers that lattice-geometric approaches are complete geometrical structures whose geometrical objects form complete (modular) lattices.
year | journal | country | edition | language |
---|---|---|---|---|
1995-01-01 |