6533b86ffe1ef96bd12cd2ff

RESEARCH PRODUCT

DNA-induced structural changes in the papillomavirus capsid.

Hans-christoph SelinkaCornelia SappFrank SchäferMartin SappClaudia Fligge

subject

virusesImmunologyDna interactionBiologyMicrobiologychemistry.chemical_compoundVirologymedicineProkaryotic expressionHumansPapillomaviridaePapillomaviridaeVirus AssemblyStructure and AssemblyCapsomereDisulfide bondVirionbiochemical phenomena metabolism and nutritionTrypsinbiology.organism_classificationMolecular biologyCapsidchemistryInsect ScienceDNA ViralBiophysicsDNAmedicine.drug

description

ABSTRACT Human papillomavirus capsid assembly requires intercapsomeric disulfide bonds between molecules of the major capsid protein L1. Virions isolated from naturally occurring lesions have a higher degree of cross-linking than virus-like particles (VLPs), which have been generated in eukaryotic expression systems. Here we show that DNA encapsidation into VLPs leads to increased cross-linking between L1 molecules comparable to that seen in virions. A higher trypsin resistance, indicating a tighter association of capsomeres through DNA interaction, accompanies this structural change.

10.1128/jvi.75.16.7727-7731.2001https://pubmed.ncbi.nlm.nih.gov/11462046