6533b86ffe1ef96bd12cd2ff
RESEARCH PRODUCT
DNA-induced structural changes in the papillomavirus capsid.
Hans-christoph SelinkaCornelia SappFrank SchäferMartin SappClaudia Fliggesubject
virusesImmunologyDna interactionBiologyMicrobiologychemistry.chemical_compoundVirologymedicineProkaryotic expressionHumansPapillomaviridaePapillomaviridaeVirus AssemblyStructure and AssemblyCapsomereDisulfide bondVirionbiochemical phenomena metabolism and nutritionTrypsinbiology.organism_classificationMolecular biologyCapsidchemistryInsect ScienceDNA ViralBiophysicsDNAmedicine.drugdescription
ABSTRACT Human papillomavirus capsid assembly requires intercapsomeric disulfide bonds between molecules of the major capsid protein L1. Virions isolated from naturally occurring lesions have a higher degree of cross-linking than virus-like particles (VLPs), which have been generated in eukaryotic expression systems. Here we show that DNA encapsidation into VLPs leads to increased cross-linking between L1 molecules comparable to that seen in virions. A higher trypsin resistance, indicating a tighter association of capsomeres through DNA interaction, accompanies this structural change.
year | journal | country | edition | language |
---|---|---|---|---|
2001-08-15 | Journal of virology |