0000000000003483

AUTHOR

Frank Schäfer

showing 4 related works from this author

DNA binding of L1 is required for human papillomavirus morphogenesis in vivo.

2002

AbstractThe role of putative DNA-binding domains of human papillomavirus (HPV) capsid proteins for DNA encapsidation in vivo is still unknown. We have now analyzed mutants of the major capsid protein L1 of HPV type 33, which are defective for DNA binding, for their ability to encapsidate DNA using an in vivo packaging approach. Since the DNA-binding domain and the nuclear localization signal (NLS) of L1 overlap, both a carboxy-terminal deletion mutant (L1-1/470) and a substitution mutant (L1-1/477M9) were analyzed. L1-1/477M9 has the classical NLS replaced by a noncanonical NLS taken from the human hnRNP protein A1. The mutant proteins were defective for DNA binding in contrast to wild-type…

CytoplasmHMG-boxMutantBiologyKidneypapillomavirusCell Linechemistry.chemical_compoundCapsidVirologyHumansPoint MutationDNA bindingPapillomaviridaeInfectivityCell NucleusVirus AssemblypseudovirionsL1DNA encapsidationMolecular biologyChromatinDNA-Binding ProteinschemistryCapsidCytoplasmDNA ViralchromatinDNANuclear localization sequenceVirology
researchProduct

Human papillomavirus infection requires cell surface heparan sulfate.

2001

ABSTRACT Using pseudoinfection of cell lines, we demonstrate that cell surface heparan sulfate is required for infection by human papillomavirus type 16 (HPV-16) and HPV-33 pseudovirions. Pseudoinfection was inhibited by heparin but not dermatan or chondroitin sulfate, reduced by reducing the level of surface sulfation, and abolished by heparinase treatment. Carboxy-terminally deleted HPV-33 virus-like particles still bound efficiently to heparin. The kinetics of postattachment neutralization by antiserum or heparin indicated that pseudovirions were shifted on the cell surface from a heparin-sensitive into a heparin-resistant mode of binding, possibly involving a secondary receptor. Alpha-6…

ImmunologyIntegrinIntegrin alpha6Microbiologychemistry.chemical_compoundSulfationAntigens CDVirologymedicineAnimalsHumansChondroitin sulfateReceptorNeural Cell Adhesion MoleculesPapillomaviridaeAntiserumHeparinaseMembrane GlycoproteinsbiologyHeparinVirionHeparan sulfateHeparinMolecular biologyVirus-Cell InteractionschemistryInsect ScienceCOS Cellsbiology.proteinHeparitin SulfateLeukocyte L1 Antigen Complexmedicine.drugJournal of virology
researchProduct

Reorganization of Nuclear Domain 10 Induced by Papillomavirus Capsid Protein L2

2002

AbstractNuclear domains (ND) 10 are associated with proteins implicated in transcriptional regulation, growth suppression, and apoptosis. We now show that the minor capsid protein L2 of human papillomavirus (HPV) type 33 induces a reorganization of ND10-associated proteins. Whereas the promyelocytic leukemia protein, the major structural component of ND10, was unaffected by L2, Sp100 was released from ND10 upon L2 expression. The total cellular amount of Sp100, but not of Sp100 mRNA, decreased significantly, suggesting degradation of Sp100. Proteasome inhibitors induced the dispersal of Sp100 and inhibited the nuclear translocation of L2. In contrast to Sp100, Daxx was recruited to ND10 by …

Co-Repressor ProteinsImmunoprecipitationFluorescent Antibody TechniqueVaccinia virusPromyelocytic Leukemia ProteinAutoantigenspapillomavirusCell LinePromyelocytic leukemia proteinCapsidDeath-associated protein 6DaxxVirologyHumansSp100RNA MessengerAdaptor Proteins Signal TransducingCell NucleusRecombination GeneticbiologyTumor Suppressor ProteinsIntracellular Signaling Peptides and ProteinsNuclear ProteinsND10Signal transducing adaptor proteinAntigens NuclearOncogene Proteins ViralL2biochemical phenomena metabolism and nutritionBlotting NorthernMolecular biologyNeoplasm ProteinsTransport proteinCell biologyProtein TransportProteasomeCapsidbiology.proteinRNACapsid ProteinsFemaleCarrier ProteinsCo-Repressor ProteinsMolecular ChaperonesTranscription FactorsVirology
researchProduct

DNA-induced structural changes in the papillomavirus capsid.

2001

ABSTRACT Human papillomavirus capsid assembly requires intercapsomeric disulfide bonds between molecules of the major capsid protein L1. Virions isolated from naturally occurring lesions have a higher degree of cross-linking than virus-like particles (VLPs), which have been generated in eukaryotic expression systems. Here we show that DNA encapsidation into VLPs leads to increased cross-linking between L1 molecules comparable to that seen in virions. A higher trypsin resistance, indicating a tighter association of capsomeres through DNA interaction, accompanies this structural change.

virusesImmunologyDna interactionBiologyMicrobiologychemistry.chemical_compoundVirologymedicineProkaryotic expressionHumansPapillomaviridaePapillomaviridaeVirus AssemblyStructure and AssemblyCapsomereDisulfide bondVirionbiochemical phenomena metabolism and nutritionTrypsinbiology.organism_classificationMolecular biologyCapsidchemistryInsect ScienceDNA ViralBiophysicsDNAmedicine.drugJournal of virology
researchProduct