6533b86ffe1ef96bd12cd424

RESEARCH PRODUCT

Slow magnetic fluctuations and superconductivity in fluorine-doped NdFeAsO

Sergiy KatrychNikolai D. ZhigadloJ. KarpinskiJ. KarpinskiSamuele SannaRustem KhasanovMarina PuttiPietro BonfàG. LamuraR. De RenziToni ShirokaToni Shiroka

subject

Lanthanidemuon spin spectroscopyMaterials scienceFOS: Physical scienceschemistry.chemical_elementcharge dopingSuperconductivity (cond-mat.supr-con)Phase (matter)Condensed Matter::SuperconductivityPnictide superconductorElectronicinterplay magnetism and superconductivityOptical and Magnetic MaterialsSpectroscopySuperconductivityCondensed Matter Physics; Electronic Optical and Magnetic Materials SPIN RELAXATION PHASE-DIAGRAMCondensed matter physicsCondensed Matter - SuperconductivityPHASE-DIAGRAMDopingMuon spin spectroscopyCondensed Matter Physics3. Good healthElectronic Optical and Magnetic MaterialschemistryFluorineSPIN RELAXATIONCondensed Matter::Strongly Correlated ElectronsFluorine doping

description

Among the widely studied superconducting iron-pnictide compounds belonging to the Ln1111 family (with Ln a lanthanide), a systematic investigation of the crossover region between the superconducting and the antiferromagnetic phase for the Ln = Nd case has been missing. We fill this gap by focusing on the intermediate doping regime of NdFeAsO(1-x)F(x) by means of dc-magnetometry and muon-spin spectroscopy measurements. The long-range order we detect at low fluorine doping is replaced by short-range magnetic interactions at x = 0.08, where also superconductivity appears. In this case, longitudinal-field muon-spin spectroscopy experiments show clear evidence of slow magnetic fluctuations that disappear at low temperatures. This fluctuating component is ascribed to the glassy-like character of the magnetically ordered phase of NdFeAsO at intermediate fluorine doping.

10.1103/physrevb.91.024513http://dx.doi.org/10.1103/PhysRevB.91.024513