6533b86ffe1ef96bd12cd44a

RESEARCH PRODUCT

Posttranscriptional RNA Modifications: Playing Metabolic Games in a Cell’s Chemical Legoland

Mark HelmJuan D. Alfonzo

subject

Metabolic stateClinical BiochemistryCellComputational biologyBiologyBiochemistryArticleRNA TransferDrug DiscoveryAnticodonChemical groupsmedicineProtein biosynthesisRNA Processing Post-TranscriptionalUridineMolecular BiologyPharmacologyGeneticsBacteriaRNAGeneral MedicineEukaryotic Cellsmedicine.anatomical_structureTransfer RNAMetabolic rateNucleic Acid ConformationRNAMolecular MedicineMetabolic Networks and PathwaysFunction (biology)

description

Nature combines existing biochemical building blocks, at times with subtlety of purpose. RNA modifications are a prime example of this, where standard RNA nucleosides are decorated with chemical groups and building blocks that we recall from our basic biochemistry lectures. The result: a wealth of chemical diversity whose full biological relevance has remained elusive despite being public knowledge for some time. Here, we will highlight a number of modifications that, because of their chemical intricacy, rely on seemingly unrelated pathways to provide co-factors for their synthesis. Besides their immediate role in affecting RNA function, modifications may act as sensors and transducers of information that connect a cell's metabolic state to its translational output, carefully orchestrating a delicate balance between metabolic rate and protein synthesis at a system's level.

https://doi.org/10.1016/j.chembiol.2013.10.015