6533b86ffe1ef96bd12cdbb6

RESEARCH PRODUCT

A topological obstruction to the geodesibility of a foliation of odd dimension

David L. JohnsonA. M. Naveira

subject

Differential geometrySimple (abstract algebra)Hyperbolic geometrySubbundleDimension (graph theory)Mathematics::Differential GeometryGeometry and TopologyAlgebraic geometryRiemannian manifoldTopologyMathematics::Symplectic GeometryFoliationMathematics

description

Let M be a compact Riemannian manifold of dimension n, and let ℱ be a smooth foliation on M. A topological obstruction is obtained, similar to results of R. Bott and J. Pasternack, to the existence of a metric on M for which ℱ is totally geodesic. In this case, necessarily that portion of the Pontryagin algebra of the subbundle ℱ must vanish in degree n if ℱ is odd-dimensional. Using the same methods simple proofs of the theorems of Bott and Pasternack are given.

https://doi.org/10.1007/bf00149358