6533b86ffe1ef96bd12cdbcd

RESEARCH PRODUCT

Measurements of the branching fractions for D+→KS0KS0K+, KS0KS0π+ and D0→KS0KS0, KS0KS0KS0

M. AblikimM.n. AchasovS. AhmedX.c. AiO. AlbayrakM. AlbrechtD.j. AmbroseA. AmorosoF.f. AnQ. AnJ.z. BaiR. Baldini FerroliY. BanD.w. BennettJ.v. BennettN. BergerM. BertaniD. BettoniJ.m. BianF. BianchiE. BogerI. BoykoR.a. BriereH. CaiX. CaiO. CakirA. CalcaterraG.f. CaoS.a. CetinJ. ChaiJ.f. ChangG. ChelkovG. ChenH.s. ChenJ.c. ChenM.l. ChenS. ChenS.j. ChenX. ChenX.r. ChenY.b. ChenH.p. ChengX.k. ChuG. CibinettoH.l. DaiJ.p. DaiA. DbeyssiD. DedovichZ.y. DengA. DenigI. DenysenkoM. DestefanisF. De MoriY. DingC. DongJ. DongL.y. DongM.y. DongZ.l. DouS.x. DuP.f. DuanJ.z. FanJ. FangS.s. FangX. FangY. FangR. FarinelliL. FavaO. FedorovF. FeldbauerG. FeliciC.q. FengE. FioravantiM. FritschC.d. FuQ. GaoX.l. GaoY. GaoZ. GaoI. GarziaK. GoetzenL. GongW.x. GongW. GradlM. GrecoM.h. GuY.t. GuY.h. GuanA.q. GuoL.b. GuoR.p. GuoY. GuoY.p. GuoZ. HaddadiA. HafnerS. HanX.q. HaoF.a. HarrisK.l. HeF.h. HeinsiusT. HeldY.k. HengT. HoltmannZ.l. HouC. HuH.m. HuJ.f. HuT. HuY. HuG.s. HuangJ.s. HuangX.t. HuangX.z. HuangY. HuangZ.l. HuangT. HussainQ. JiQ.p. JiX.b. JiX.l. JiL.w. JiangX.s. JiangX.y. JiangJ.b. JiaoZ. JiaoD.p. JinS. JinT. JohanssonA. JulinN. Kalantar-nayestanakiX.l. KangX.s. KangM. KavatsyukB.c. KeP. KieseR. KliemtB. KlossO.b. KolcuB. KopfM. KornicerA. KupscW. KühnJ.s. LangeM. LaraP. LarinH. LeithoffC. LengC. LiCheng LiD.m. LiF. LiF.y. LiG. LiH.b. LiH.j. LiJ.c. LiJin LiK. LiK. LiLei LiP.r. LiQ.y. LiT. LiW.d. LiW.g. LiX.l. LiX.n. LiX.q. LiY.b. LiZ.b. LiH. LiangY.f. LiangY.t. LiangG.r. LiaoD.x. LinB. LiuB.j. LiuC.x. LiuD. LiuF.h. LiuFang LiuFeng LiuH.b. LiuH.h. LiuH.h. LiuH.m. LiuJ. LiuJ.b. LiuJ.p. LiuJ.y. LiuK. LiuK.y. LiuL.d. LiuP.l. LiuQ. LiuS.b. LiuX. LiuY.b. LiuY.y. LiuZ.a. LiuZhiqing LiuH. LoehnerX.c. LouH.j. LuJ.g. LuY. LuY.p. LuC.l. LuoM.x. LuoT. LuoX.l. LuoX.r. LyuF.c. MaH.l. MaL.l. MaM.m. MaQ.m. MaT. MaX.n. MaX.y. MaY.m. MaF.e. MaasM. MaggioraQ.a. MalikY.j. MaoZ.p. MaoS. MarcelloJ.g. MesschendorpG. MezzadriJ. MinR.e. MitchellX.h. MoY.j. MoC. Morales MoralesN.yu. MuchnoiH. MuramatsuP. MusiolY. NefedovF. NerlingI.b. NikolaevZ. NingS. NisarS.l. NiuX.y. NiuS.l. OlsenQ. OuyangS. PacettiY. PanP. PatteriM. PelizaeusH.p. PengK. PetersJ. PetterssonJ.l. PingR.g. PingR. PolingV. PrasadH.r. QiM. QiS. QianC.f. QiaoL.q. QinN. QinX.s. QinZ.h. QinJ.f. QiuK.h. RashidC.f. RedmerM. RipkaG. RongCh. RosnerX.d. RuanA. SarantsevM. SavriéC. SchnierK. SchoenningS. SchumannW. ShanM. ShaoC.p. ShenP.x. ShenX.y. ShenH.y. ShengM. ShiW.m. SongX.y. SongS. SosioS. SpataroG.x. SunJ.f. SunS.s. SunX.h. SunY.j. SunY.z. SunZ.j. SunZ.t. SunC.j. TangX. TangI. TapanE.h. ThorndikeM. TiemensI. UmanG.s. VarnerB. WangB.l. WangD. WangD.y. WangK. WangL.l. WangL.s. WangM. WangP. WangP.l. WangS.g. WangW. WangW.p. WangX.f. WangY. WangY.d. WangY.f. WangY.q. WangZ. WangZ.g. WangZ.h. WangZ.y. WangZ.y. WangT. WeberD.h. WeiJ.b. WeiP. WeidenkaffS.p. WenU. WiednerM. WolkeL.h. WuL.j. WuZ. WuL. XiaL.g. XiaY. XiaD. XiaoH. XiaoZ.j. XiaoY.g. XieQ.l. XiuG.f. XuJ.j. XuL. XuQ.j. XuQ.n. XuX.p. XuL. YanW.b. YanW.c. YanY.h. YanH.j. YangH.x. YangL. YangY.x. YangM. YeM.h. YeJ.h. YinB.x. YuC.x. YuJ.s. YuC.z. YuanW.l. YuanY. YuanA. YuncuA.a. ZafarA. ZalloY. ZengZ. ZengB.x. ZhangB.y. ZhangC. ZhangC.c. ZhangD.h. ZhangH.h. ZhangH.y. ZhangJ. ZhangJ.j. ZhangJ.l. ZhangJ.q. ZhangJ.w. ZhangJ.y. ZhangJ.z. ZhangK. ZhangL. ZhangS.q. ZhangX.y. ZhangY. ZhangY.h. ZhangY.n. ZhangY.t. ZhangYu ZhangZ.h. ZhangZ.p. ZhangZ.y. ZhangG. ZhaoJ.w. ZhaoJ.y. ZhaoJ.z. ZhaoLei ZhaoLing ZhaoM.g. ZhaoQ. ZhaoQ.w. ZhaoS.j. ZhaoT.c. ZhaoY.b. ZhaoZ.g. ZhaoA. ZhemchugovB. ZhengJ.p. ZhengW.j. ZhengY.h. ZhengB. ZhongL. ZhouX. ZhouX.k. ZhouX.r. ZhouX.y. ZhouK. ZhuK.j. ZhuS. ZhuS.h. ZhuX.l. ZhuY.c. ZhuY.s. ZhuZ.a. ZhuJ. ZhuangL. ZottiB.s. ZouJ.h. Zou

subject

PhysicsNuclear and High Energy PhysicsMeson010308 nuclear & particles physicsElectron–positron annihilation0103 physical sciencesHadronAnalytical chemistryResonance010306 general physicsBranching (polymer chemistry)01 natural sciences

description

Abstract By analyzing 2.93 fb − 1 of data taken at the ψ ( 3770 ) resonance peak with the BESIII detector, we measure the branching fractions for the hadronic decays D + → K S 0 K S 0 K + , D + → K S 0 K S 0 π + , D 0 → K S 0 K S 0 and D 0 → K S 0 K S 0 K S 0 . They are determined to be B ( D + → K S 0 K S 0 K + ) = ( 2.54 ± 0.05 s t a t . ± 0.12 s y s . ) × 10 − 3 , B ( D + → K S 0 K S 0 π + ) = ( 2.70 ± 0.05 s t a t . ± 0.12 s y s . ) × 10 − 3 , B ( D 0 → K S 0 K S 0 ) = ( 1.67 ± 0.11 s t a t . ± 0.11 s y s . ) × 10 − 4 and B ( D 0 → K S 0 K S 0 K S 0 ) = ( 7.21 ± 0.33 s t a t . ± 0.44 s y s . ) × 10 − 4 , where the second one is measured for the first time and the others are measured with significantly improved precision over the previous measurements.

https://doi.org/10.1016/j.physletb.2016.12.020