6533b86ffe1ef96bd12cdd4d

RESEARCH PRODUCT

Atypical transistor-based chaotic oscillators: Design, realization, and diversity

Ludovico MinatiStanisław DrożdżMattia FrascaLuca FaesPaweł Oświȩcimka

subject

Statistical and Nonlinear Physics; Mathematical Physics; Physics and Astronomy (all); Applied MathematicsChaoticGeneral Physics and AstronomyHardware_PERFORMANCEANDRELIABILITYInductor01 natural sciencesSynchronization010305 fluids & plasmaslaw.inventionPhysics and Astronomy (all)Computer Science::Emerging TechnologiesControl theorylaw0103 physical sciencesAttractorHardware_INTEGRATEDCIRCUITSMathematical Physic010306 general physicsMathematical PhysicsMathematicsElectronic circuitApplied MathematicsTransistorStatistical and Nonlinear Physicsvisual_artElectronic componentSettore ING-INF/06 - Bioingegneria Elettronica E Informaticavisual_art.visual_art_mediumResistorHardware_LOGICDESIGNStatistical and Nonlinear Physic

description

In this paper, we show that novel autonomous chaotic oscillators based on one or two bipolar junction transistors and a limited number of passive components can be obtained via random search with suitable heuristics. Chaos is a pervasive occurrence in these circuits, particularly after manual adjustment of a variable resistor placed in series with the supply voltage source. Following this approach, 49 unique circuits generating chaotic signals when physically realized were designed, representing the largest collection of circuits of this kind to date. These circuits are atypical as they do not trivially map onto known topologies or variations thereof. They feature diverse spectra and predominantly anti-persistent monofractal dynamics. Notably, we recurrently found a circuit comprising one resistor, one transistor, two inductors, and one capacitor, which generates a range of attractors depending on the parameter values. We also found a circuit yielding an irregular quantized spike-train resembling some aspects of neural discharge and another one generating a double-scroll attractor, which represent the smallest known transistor-based embodiments of these behaviors. Through three representative examples, we additionally show that diffusive coupling of heterogeneous oscillators of this kind may give rise to complex entrainment, such as lag synchronization with directed information transfer and generalized synchronization. The replicability and reproducibility of the experimental findings are good. Published by AIP Publishing.

10.1063/1.4994815http://hdl.handle.net/10447/276402