6533b86ffe1ef96bd12ce5ed

RESEARCH PRODUCT

Study of decay dynamics andCPasymmetry inD+→KL0e+νedecay

H. B. LiX. K. ChuF. Y. LiX. Q. LiLing ZhaoA. G. DenigC. L. LuoH. J. LuJ. G. LuQ. OuyangLei ZhaoZ. L. HouYang YangPeilian LiuC. C. ZhangB. ZhongL. B. GuoLingxuan ZhangY. DingS. S. FangF. E. MaasT. HuY. B. LiuP. L. WangZ. T. SunZ. A. LiuX. L. LuoV. PrasadY. H. ZhengCong-feng QiaoO. AlbayrakI. UmanC. HuX. TangR. KliemtY. BanP. WeidenkaffC. LengA. ZalloL. G. XiaUlrich WiednerK. J. ZhuK. MoriyaB. J. LiuW. P. WangN. Yu. MuchnoiX. S. KangS. P. WenJie YuF. BianchiJ. MinX. S. QinX. R. ZhouGuangming HuangY. H. ZhangP. X. ShenZ. WuCheng LiS. SchumannK. J. ZhuK. Y. LiuZ. B. LiC. Z. YuanJ. F. SunP. LarinZ. A. ZhuX. H. MoL. S. WangM. H. YeJ. B. JiaoL. W. JiangH. L. MaD. M. LiT. MaB. KopfF. LiD. Y. LiuZ. Y. WangYao WangX. Y. JiangY. H. GuanKai LiuZhiqing ZhangC. P. ShenL. J. WuL. L. WangH. CaiF. C. MaK. L. HeH. MuramatsuM. PelizaeusM. H. GuM. H. YeM. M. MaP. R. LiX. N. MaY. J. MoS. B. LiuG. LiY. F. WangH. Y. ShengM. Z. WangD. BettoniE. H. ThorndikeL. D. LiuY. X. YangY. ZengY. T. LiangC. D. FuC. X. YuH. H. LiuY. NefedovJ. C. LiH. S. ChenT. WeberL. Y. DongJimin ZhaoC. Q. FengX. R. ChenL. Q. QinJ. F. QiuB. ZhengR. G. PingM. FritschF. FeldbauerZ. Y. DengM. MaggioraA. HafnerM. KavatsyukQ. P. JiQ. ZhaoY. Z. SunL. FavaY. X. XiaS. H. ZhuLiqing XuX. Y. ShenS. HanW. J. ZhengX. Y. MaX. K. ZhouXingguo LiX. C. ChenM. QiS. QianJialun PingG. X. SunJ. V. BennettLi YanXiang ZhouK. ZhangX. Y. ZhangJ. ZhuangZ. NingM. X. LuoJian WeiJ. Z. BaiYucheng HuangGang ZhaoF. NerlingB. X. ZhangCui LiZ. JiaoFu-hu LiuW. X. GongD. V. DedovichY. B. ChenH. J. YangXiaofeng ZhuJ. Z. ZhangL. H. WuD. H. ZhangM. LaraJ. B. LiuY. J. MaoH. J. LiJ. Y. LiuM. SavrieY. J. SunE. BogerE. BogerY. P. LuY. B. ZhaoG. CibinettoQ. L. XiuJ. Q. ZhangS. MarcelloJ. H. YinG. FeliciK. H. RashidS. Chen ChenW. F. WangH. H. ZhangW. ShanX. B. JiM. TiemensQ. GaoY. N. GaoY. ZhangP. PatteriQ. AnX. FangJ. DongJie ZhaoD. X. LinFeng LiuM. ShaoY. T. GuX. Y. GaoH. M. HuE. FioravantiX. H. SunJ. Z. FanA. ZhemchugovX. LiuM. AblikimY. Q. WangX. L. KangA. SarantsevD. H. WeiJ. S. LangeJ. W. ZhangQ. W. ZhaoS. NisarC. J. TangY. HuZ. J. XiaoP. L. WangSerkant Ali CetinM. BertaniZ. HaddadiZ. G. ZhaoP. KieseL. YangY. P. LuChi ZhangZ. J. SunH. LoehnerB. WangD. XiaoS. L. OlsenR. A. BriereJun-yi ZhangY. P. GuoW. GradlG. S. HuangM. RipkaS. SosioKrisztian PetersZ. P. ZhangX. S. JiangG. R. LiaoD. W. BennettZujian WangO. CakirO. CakirZhiqing LiuJin LiT. JohanssonJ. F. ChangZ. H. WangX. CaiX. Q. HaoF. A. HarrisC. F. RedmerXiaocong AiM. G. ZhaoR. P. GuoX. T. HuangA. A. ZafarG. RongY. N. ZhangM. UllrichZ. G. WangH. Y. ZhangM. Y. DongG. F. ChenH. B. LiuS. J. ChenJ. Y. ZhangJ. H. ZouS. S. SunMagnus WolkeJ. J. XuY. F. LiangD. P. JinL. ZottiY. K. HengDayong WangN. QinJ. M. BianZhenyu ZhangS. J. ZhaoM. DestefanisJ. S. HuangC. X. LiuJ. C. ChenXuanhong LouNasser Kalantar-nayestanakiAndrzej KupscC. Morales MoralesYue PanW. L. YuanM. L. ChenR. E. MitchellJ. J. LiangG. F. XuS. JinY. GuoBibo KeW. B. YanX. Y. SongM. N. AchasovM. N. AchasovK. GoetzenW. KuehnS. PacettiKe LiFang LiuI. DenysenkoB. Y. ZhangXiangdong RuanQ. LiuL. L. MaL. G. XiaA. AmorosoA. DbeyssiM. KornicerA. JulinF. De MoriX. Y. ZhouX. F. WangQ. M. MaB. KlossX. Y. NiuY. YuanY. S. ZhuQ. J. XuD. J. AmbroseW. C. YanX. N. LiHaiping PengI. GarziaYu ZhangTao LuoL. P. ZhouB. X. YuZhi ZengZ. P. MaoA. CalcaterraH. P. ChengJ. FangTao LiM. AlbrechtW. D. LiCh. RosnerH. S. ChenH. LiangH. L. DaiIgor BoykoH. X. YangI. B. NikolaevDing-xiong WangJ. P. LiuQ. P. JiO. B. KolcuJ. G. MesschendorpJ. P. DaiM. ShiI. TapanY. H. YanJ. W. ZhaoJ. H. LiuW. G. LiX. M. LiS. SpataroX. P. XuY. C. ZhuKe WangLei LiH. M. LiuYaquan FangH. XiaoJ. F. HuR. Baldini FerroliT. HeldK. SchoenningB. S. ZouG. F. CaoR. PolingP. F. DuanFenfen AnT. C. ZhaoA. Q. GuoW. M. SongZ. H. QinShan WangXiao-rui LyuG. S. VarnerX. L. JiG. A. ChelkovG. A. ChelkovG. A. ChelkovTalib HussainA. YuncuY. G. XieS. X. DuX. L. GaoC. DongM. GrecoJoachim PetterssonYunlong ZhangJ. L. ZhangJianping ZhengS. ZhuJ. J. ZhangZ. GaoS. L. Niu

subject

PhysicsNuclear and High Energy PhysicsAnnihilationMeson010308 nuclear & particles physicsBranching fractionCabibbo–Kobayashi–Maskawa matrixElectron–positron annihilationHadronForm factor (quantum field theory)Analytical chemistry01 natural sciencesNuclear physics0103 physical sciencesCP violation010306 general physics

description

Using 2.92 fb(-1) of electron-positron annihilation data collected at root s = 3.773 GeV with the BESIII detector, we obtain the first measurements of the absolute branching fraction B(D+ -> K(L)(0)e(+)nu(e)) = (4.481 +/- 0.027(stat) +/- 0.103(sys))% and the CP asymmetry A(CP)(D+-> KL0e+nu e) = (-0.59 +/- 0.60(stat) +/- 1.48(sys))%. From the D+ -> K(L)(0)e(+)nu(e) differential decay rate distribution, the product of the hadronic form factor and the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element, f(+)(K)(0)vertical bar V-cs vertical bar, is determined to be 0.728 +/- 0.006(stat) +/- 0.011(sys). Using vertical bar V-cs vertical bar from the SM constrained fit with the measured f(+)(K)(0)vertical bar V-cs vertical bar, f(+)(K)(0) = 0.748 +/- 0.007(stat) +/- 0.012(sys) is obtained, and utilizing the unquenched Lattice QCD (LQCD) calculation for f(+)(K)(0), vertical bar V-cs vertical bar = 0.975 +/- 0.008(stat) +/- 0.015(sys) +/- 0.025(LQCD).

https://doi.org/10.1103/physrevd.92.112008