6533b86ffe1ef96bd12ce704
RESEARCH PRODUCT
Unveiling distribution patterns of freshwater phytoplankton by a next generation sequencing based approach.
Stefan BertilssonPetr ZnachorKarel ŠImekJakob PernthalerAlexander EilerStina DrakareEva S. LindströmSari PeuraYang YangCarina Rofnersubject
Time FactorsBiodiversitylcsh:MedicineMarine and Aquatic SciencesFresh WaterPlant Science580 Plants (Botany)10126 Department of Plant and Microbial BiologyPhytoplankton successionRNA Ribosomal 16Ssequence databasesNaturvetenskapEnvironmental monitoringlcsh:ScienceTrophic levelFreshwater EcologyMultidisciplinaryEcologyEcologykloroplastiHigh-Throughput Nucleotide SequencingGenomicsPlantssinibakteeritviherhiukkasetribosomal RNANatural ScienceskasviplanktonResearch ArticleFood ChainAlgaeta11721100 General Agricultural and Biological SciencesBiologyjärvetMicrobiologyDNA sequencingMicrobial EcologysekvenssitietokantaModel Organisms1300 General Biochemistry Genetics and Molecular BiologyPlant and Algal ModelsPhytoplanktonEvolutionary Systematicsribosomaalinen RNAsyanobakteeritBiologyTaxonomy1000 MultidisciplinaryEvolutionary BiologySequence Analysis RNAlcsh:RfungiRibosomal RNAjärviTaxonPhytoplanktonphytoplanktonEarth Scienceslcsh:QEnvironmental ProtectionEcological Environmentsdescription
The recognition and discrimination of phytoplankton species is one of the foundations of freshwater biodiversity research and environmental monitoring. This step is frequently a bottleneck in the analytical chain from sampling to data analysis and subsequent environmental status evaluation. Here we present phytoplankton diversity data from 49 lakes including three seasonal surveys assessed by next generation sequencing (NGS) of 16S ribosomal RNA chloroplast and cyanobacterial gene amplicons and also compare part of these datasets with identification based on morphology. Direct comparison of NGS to microscopic data from three time-series showed that NGS was able to capture the seasonality in phytoplankton succession as observed by microscopy. Still, the PCR-based approach was only semi-quantitative, and detailed NGS and microscopy taxa lists had only low taxonomic correspondence. This is probably due to, both, methodological constraints and current discrepancies in taxonomic frameworks. Discrepancies included Euglenophyta and Heterokonta that were scarce in the NGS but frequently detected by microscopy and Cyanobacteria that were in general more abundant and classified with high resolution by NGS. A deep-branching taxonomically unclassified cluster was frequently detected by NGS but could not be linked to any group identified by microscopy. NGS derived phytoplankton composition differed significantly among lakes with different trophic status, showing that our approach can resolve phytoplankton communities at a level relevant for ecosystem management. The high reproducibility and potential for standardization and parallelization makes our NGS approach an excellent candidate for simultaneous monitoring of prokaryotic and eukaryotic phytoplankton in inland waters. peerReviewed
year | journal | country | edition | language |
---|---|---|---|---|
2012-09-18 | PloS one |