6533b86ffe1ef96bd12ce792

RESEARCH PRODUCT

Critical Structural Defects Explain Filamin A Mutations Causing Mitral Valve Dysplasia

Maarit HellmanPerttu PermiUlla PentikäinenSimon LecointeTatu HaatajaTatu HaatajaJean MérotRomain Capoulade

subject

Protein FoldingdysplasiatFilamins[SDV]Life Sciences [q-bio]PopulationProtein Tyrosine Phosphatase Non-Receptor Type 12BiophysicsMutation Missensesynnynnäiset sydänviatProtein tyrosine phosphataseBiologyMolecular Dynamics Simulationmedicine.disease_causeFilamin03 medical and health sciences0302 clinical medicinemitral valve dysplasiaMitral valvemedicineFLNAMissense mutationHumanseducationGene030304 developmental biologyGenetics0303 health sciencesMutationeducation.field_of_studyBinding SitesMitral Valve Prolapsecritical structural defectshiippaläppäfilamiinitArticles3. Good healthmedicine.anatomical_structurecardiovascular systemfilamin A mutationsgeneettiset tekijätmutaatiot030217 neurology & neurosurgeryProtein Binding

description

Mitral valve diseases affect approximately 3% of the population and are the most common reasons for valvular surgery because no drug-based treatments exist. Inheritable genetic mutations have now been established as the cause of mitral valve insufficiency, and four different missense mutations in the filamin A gene (FLNA) have been found in patients suffering from non-syndromic mitral valve dysplasia (MVD). The FLNA protein is expressed, in particular, in endocardial endothelia during fetal valve morphogenesis and is key in cardiac development. The FLNA-MVD causing mutations are clustered in the N-terminal region of FLNA. How the mutations in FLNA modify its structure and function, have mostly remained elusive. In this study, using NMR spectroscopy and interaction assays, we investigated FLNA-MVD causing V711D and H743P mutations. Our results clearly indicated that both mutations almost completely destroy the folding of the FLNA5 domain, where the mutation is located, and also affect the folding of the neighboring FLNA4 domain. The structure of the neighboring FLNA6 domain was not affected by the mutations. These mutations also completely abolish FLNA’s interactions with protein tyrosine phosphatase (PTP) non-receptor type 12 (PTPN12), which has been suggested to contribute to the pathogenesis of FLNA-MVD. Taken together, our results provide an essential structural and molecular framework for understanding the molecular bases of FLNA-MVD, which is crucial for the development of new therapies to replace surgery. peerReviewed

10.1016/j.bpj.2019.08.032https://hal.archives-ouvertes.fr/hal-02332272